Research article Special Issues

A patchy model for tick population dynamics with patch-specific developmental delays


  • Received: 22 December 2021 Revised: 25 February 2022 Accepted: 10 March 2022 Published: 24 March 2022
  • Tick infestation and tick-borne disease spread in a region of multiple adjacent patches with different environmental conditions depend heavily on the host mobility and patch-specific suitability for tick growth. Here we introduce a two-patch model where environmental conditions differ in patches and yield different tick developmental delays, and where feeding adult ticks can be dispersed by the movement of larger mammal hosts. We obtain a coupled system of four delay differential equations with two delays, and we examine how the dynamical behaviours depend on patch-specific basic reproduction numbers and host mobility by using singular perturbation analyses and monotone dynamical systems theory. Our theoretical results and numerical simulations provide useful insights for tick population control strategies.

    Citation: Marco Tosato, Xue Zhang, Jianhong Wu. A patchy model for tick population dynamics with patch-specific developmental delays[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 5329-5360. doi: 10.3934/mbe.2022250

    Related Papers:

  • Tick infestation and tick-borne disease spread in a region of multiple adjacent patches with different environmental conditions depend heavily on the host mobility and patch-specific suitability for tick growth. Here we introduce a two-patch model where environmental conditions differ in patches and yield different tick developmental delays, and where feeding adult ticks can be dispersed by the movement of larger mammal hosts. We obtain a coupled system of four delay differential equations with two delays, and we examine how the dynamical behaviours depend on patch-specific basic reproduction numbers and host mobility by using singular perturbation analyses and monotone dynamical systems theory. Our theoretical results and numerical simulations provide useful insights for tick population control strategies.



    加载中


    [1] B. Greenfield, Environmental parameters affecting tick (Ixodes ricinus) distribution during the summer season in Richmond Park, Biosci. Horiz., 4 (2011), 140–148. https://doi.org/10.1093/biohorizons/hzr016 doi: 10.1093/biohorizons/hzr016
    [2] J. Gray, The ecology of ticks transmitting Lyme borreliosis, Exp. Appl. Acarol., 22 (1998), 249–258. https://doi.org/10.1023/A:1006070416135 doi: 10.1023/A:1006070416135
    [3] J. Gray, O. Kahl, C. Janetzki, J. Stein, Studies on the ecology of Lyme disease in a deer forest in County Galway, Ireland, J. Med. Entomol., 29 (1992), 915–920. https://doi.org/10.1093/jmedent/29.6.915 doi: 10.1093/jmedent/29.6.915
    [4] N. Ogden, L. Lindsay, G. Beauchamp, D. Charron, A. Maarouf, C. O'Callaghan, et al., Investigation of relationships between temperature and developmental rates of tick Ixodes scapularis (acari: Ixodidae) in the laboratory and field, J. Med. Entomol., 41 (2004), 622–633. https://doi.org/10.1603/0022-2585-41.4.622 doi: 10.1603/0022-2585-41.4.622
    [5] J. Gray, O. Kahl, R. Lane, M. Levin, J. Tsao, Diapause in ticks of the medically important Ixodes ricinus species complex, Ticks Tick Borne Dis., 7 (2016), 992–1003. https://doi.org/10.1016/j.ttbdis.2016.05.006 doi: 10.1016/j.ttbdis.2016.05.006
    [6] X. Wu, V. Duvvuri, Y. Lou, N. Ogden, Y. Pelcat, J. Wu, Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada, J. Theor. Biol., 319 (2013), 50–61. https://doi.org/10.1016/j.jtbi.2012.11.014 doi: 10.1016/j.jtbi.2012.11.014
    [7] S. Randolph, G. Steele, An experimental evaluation of conventional control measures against the sheep tick, Ixodes ricinus (l.) (acari: Ixodidae). ⅱ. The dynamics of the tick-host interaction, Bull. Entomol. Res., 75 (1985), 501–518. https://doi.org/10.1017/S0007485300014590 doi: 10.1017/S0007485300014590
    [8] S. Randolph, K. Storey, Impact of microclimate on immature tick-rodent host interactions (acari: Ixodidae): implications for parasite transmission, J. Med. Entomol., 36 (1999), 741–748. https://doi.org/10.1093/jmedent/36.6.741 doi: 10.1093/jmedent/36.6.741
    [9] A. Lees, The sensory physiology of the sheep tick, Ixodes ricinus l., J. Exp. Biol., 25 (1948), 145–207. https://doi.org/10.1242/jeb.25.2.145 doi: 10.1242/jeb.25.2.145
    [10] C. Boyard, J. Barnouin, P. Gasqui, G. Vourc'h, Local environmental factors characterizing Ixodes ricinus nymph abundance in grazed permanent pastures for cattle, J. Parasitol., 134 (2007), 987–994. https://doi.org/10.1017/S0031182007002351 doi: 10.1017/S0031182007002351
    [11] A. Estrada-Peña, Understanding the relationships between landscape connectivity and abundance of Ixodes ricinus ticks, Exp. Appl. Acarol., 28 (2002), 239–248. https://doi.org/10.1023/a:1025362903620 doi: 10.1023/a:1025362903620
    [12] A. Estrada-Peña, The relationships between habitat topology, critical scales of connectivity and tick abundance Ixodes ricinus in a heterogeneous landscape in Northern Spain, Ecography, 26 (2003), 661–671. https://doi.org/10.1034/j.1600-0587.2003.03530.x doi: 10.1034/j.1600-0587.2003.03530.x
    [13] A. Walker, M. Alberdi, K. Urquhart, H. Rose, Risk factors in habitats of the tick Ixodes ricinus influencing human exposure to Ehrlichia phagocytophila bacteria, Med. Vet. Entomol., 15 (2001), 40–49. https://doi.org/10.1046/j.1365-2915.2001.00271.x doi: 10.1046/j.1365-2915.2001.00271.x
    [14] A. Estrada-Peña, Distribution, abundance, and habitat preferences of Ixodes ricinus (acari: Ixodidae) in Northern Spain, J. Med. Entomol., 38 (2001), 361–370. https://doi.org/10.1603/0022-2585-38.3.361 doi: 10.1603/0022-2585-38.3.361
    [15] A. Lindström, T. Jaenson, Distribution of the common tick, Ixodes ricinus (acari:Ixodidae), in different vegetation types in Southern Sweden, J. Med. Entomol., 40 (2003), 375–378. https://doi.org/10.1603/0022-2585-40.4.375 doi: 10.1603/0022-2585-40.4.375
    [16] M. Guerra, E. Walker, C. Jones, S. Paskewitz, M. Cortinas, A. Stancil, et al., Predicting the risk of Lyme disease: habitat suitability for Ixodes scapularis in the North Central United States, Emerg. Infect. Dis., 8 (2002), 289–297. https://doi.org/10.3201/eid0803.010166 doi: 10.3201/eid0803.010166
    [17] J. Medlock, K. Hansford, A. Bormane, M. Derdakova, A. Estrada-Peña, J. George, et al., Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe, Parasites Vectors, 6 (2013), 1–11. https://doi.org/10.1186/1756-3305-6-1 doi: 10.1186/1756-3305-6-1
    [18] B. Clymer, D. Howell, J. Hair, Environmental alteration in recreational areas by mechanical and chemical treatment as a means of lone star tick control, J. Econ. Entomol, 63 (1970), 504–509. https://doi.org/10.1093/jee/63.2.504 doi: 10.1093/jee/63.2.504
    [19] B. Allan, Influence of prescribed burns on the abundance of Amblyomma americanum (acari: Ixodidae) in the Missouri Ozarks, J. Med. Entomol., 46 (2009), 1030–1036. https://doi.org/10.1603/033.046.0509 doi: 10.1603/033.046.0509
    [20] F. Ruis-Fonz, L. Gilbert, The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats, Int. J. Parasitol., 40 (2010), 1013–1020. https://doi.org/10.1016/j.ijpara.2010.02.006 doi: 10.1016/j.ijpara.2010.02.006
    [21] M. Tosato, K. Nah, J. Wu, Are host control strategies effective to eradicate tick-borne diseases (TBD)?, J. Theor. Biol., 508 (2021), 1–9. https://doi.org/10.1016/j.jtbi.2020.110483 doi: 10.1016/j.jtbi.2020.110483
    [22] T. Caraco, S. Glavanakov, G. Chen, J. Flaherty, T. Ohsumi, B. Szymanski, Stage-structured infection transmission and a spatial epidemic: a model for Lyme disease, Am. Nat., 160 (2002), 348–359. https://doi.org/10.1086/341518 doi: 10.1086/341518
    [23] Y. Zhang, X. Zhao, A reaction-diffusion Lyme disease model with seasonality, SIAM J. Appl. Math., 73 (2013), 2077–2099. https://doi.org/10.1137/120875454 doi: 10.1137/120875454
    [24] G. Fan, H. Thieme, H. Zhu, Delay differential systems for tick population dynamics, J. Math. Biol., 71 (2015), 1017–1048. 10.1007/s00285-014-0845-0 doi: 10.1007/s00285-014-0845-0
    [25] X. Wang, X. Zhao, Dynamics of a time-delayed Lyme disease model with seasonality, SIAM J. Appl. Dyn. Syst., 16 (2017), 853–881. https://doi.org/10.1137/16M1087916 doi: 10.1137/16M1087916
    [26] H. Shu, G. Fan, H. Zhu, Global hopf bifurcation and dynamics of a stage-structured model with delays for tick population, J. Differ. Equ., 284 (2021), 1–22. https://doi.org/10.1016/j.jde.2021.02.037 doi: 10.1016/j.jde.2021.02.037
    [27] X. Zhang, J. Wu, Critical diapause portion for oscillations: parametric trigonometric functions and their applications for hopf bifurcation analyses, Math. Methods Appl. Sci., 42 (2019), 1363–1376. https://doi.org/10.1002/mma.5424 doi: 10.1002/mma.5424
    [28] M. Tosato, X. Zhang, J. Wu, Multi-cycle periodic solutions of a differential equation with delay that switches periodically, Differ. Equ. Dyn. Syst., (2020), 1–18. https://doi.org/10.1007/s12591-020-00536-6 doi: 10.1007/s12591-020-00536-6
    [29] W. Wang, X. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97–112. https://doi.org/10.1016/j.mbs.2002.11.001 doi: 10.1016/j.mbs.2002.11.001
    [30] J. Arino, J. Davis, D. Hartley, R. Jordan, J. Miller, P. van den Driessche, A multi-species epidemic model with spatial dynamics, Math. Med. Biol., 22 (2005), 129–141. 10.1093/imammb/dqi003 doi: 10.1093/imammb/dqi003
    [31] X. Zhang, B. Sun, Y. Lou, Dynamics of a periodic tick-borne disease model with co-feeding and multiple patches, J. Math. Biol., 82 (2021). https://doi.org/10.1007/s00285-021-01582-6 doi: 10.1007/s00285-021-01582-6
    [32] S. Randolph, Abiotic and biotic determinants of the seasonal dynamics of the tick rhipicephalus appendiculatus in South Africa, Med. Vet. Entomol., 11 (1997), 25–37. https://doi.org/10.1111/j.1365-2915.1997.tb00286.x doi: 10.1111/j.1365-2915.1997.tb00286.x
    [33] H. Smith, Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems, American Matematical Society Ebooks Program, 1995.
    [34] H. Smith, An introduction to delay differential equations with application to the life sciences, Springer, 2010.
    [35] D. Sonenshine, R. Roe, Biology of ticks (Vol.1), Oxford University Press, 2013.
    [36] D. Sonenshine, R. Roe, Biology of ticks (Vol.2), Oxford University Press, 2013.
    [37] S. Randolph, Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors, J. Parasitol., 129 (2004), S37–65. https://doi.org/10.1017/s0031182004004925 doi: 10.1017/s0031182004004925
    [38] K. Nah, F. Magpantay, Á. Bede-Fazekas, G. Röst, A. Trájer, X. Wu, et al., Assessing systemic and non-systemic transmission risk of tick-borne encephalitis virus in hungary, PLoS ONE, 14 (2019), 1–18. https://doi.org/10.1371/journal.pone.0217206 doi: 10.1371/journal.pone.0217206
    [39] European centre for disease prevention and control, Ixodes ricinus - factsheet for experts, Available from: https://ecdc.europa.eu/en/disease-vectors/facts/tick-factsheets/ixodes-ricinus.
    [40] X. Zhang, F. Scarabel, X. Wang, J. Wu, Global continuation of periodic oscillations to a diapause rhythm, J. Dyn. Differ. Equ., (2020), 1–21. https://doi.org/10.1007/s10884-020-09856-1 doi: 10.1007/s10884-020-09856-1
    [41] X. Zhang, J. Wu, Transmission dynamics of tick-borne diseases with co-feeding, developmental and behavioural diapause, Springer, 2020.
    [42] J. Hale, S. V. Lunel, Introduction to functional differential equations, Springer Science and Business Media, LLC, 1993.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2602) PDF downloads(189) Cited by(3)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog