Research article Special Issues

Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study


  • Received: 05 August 2021 Accepted: 22 September 2021 Published: 15 October 2021
  • Adherence to public health policies such as the non-pharmaceutical interventions implemented against COVID-19 plays a major role in reducing infections and controlling the spread of the diseases. In addition, understanding the transmission dynamics of the disease is also important in order to make and implement efficient public health policies. In this paper, we developed an SEIR-type compartmental model to assess the impact of adherence to COVID-19 non-pharmaceutical interventions and indirect transmission on the dynamics of the disease. Our model considers both direct and indirect transmission routes and stratifies the population into two groups: those that adhere to COVID-19 non-pharmaceutical interventions (NPIs) and those that do not adhere to the NPIs. We compute the control reproduction number and the final epidemic size relation for our model and study the effect of different parameters of the model on these quantities. Our results show that there is a significant benefit in adhering to the COVID-19 NPIs.

    Citation: Sarafa A. Iyaniwura, Musa Rabiu, Jummy F. David, Jude D. Kong. Assessing the impact of adherence to Non-pharmaceutical interventions and indirect transmission on the dynamics of COVID-19: a mathematical modelling study[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8905-8932. doi: 10.3934/mbe.2021439

    Related Papers:

  • Adherence to public health policies such as the non-pharmaceutical interventions implemented against COVID-19 plays a major role in reducing infections and controlling the spread of the diseases. In addition, understanding the transmission dynamics of the disease is also important in order to make and implement efficient public health policies. In this paper, we developed an SEIR-type compartmental model to assess the impact of adherence to COVID-19 non-pharmaceutical interventions and indirect transmission on the dynamics of the disease. Our model considers both direct and indirect transmission routes and stratifies the population into two groups: those that adhere to COVID-19 non-pharmaceutical interventions (NPIs) and those that do not adhere to the NPIs. We compute the control reproduction number and the final epidemic size relation for our model and study the effect of different parameters of the model on these quantities. Our results show that there is a significant benefit in adhering to the COVID-19 NPIs.



    加载中


    [1] World Health Organization (WHO), WHO's COVID-19 response timeline, (accessed April 23, 2021). Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline/#category-Information.
    [2] World Health Organization (WHO), WHO Coronavirus (COVID-19) Dashboard, (accessed April 23, 2021). Available from: https://covid19.who.int/.
    [3] N. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Report 9: Impact of non-pharmaceutical interventions (npis) to reduce covid19 mortality and healthcare demand, Imp. Coll. London, 10 (2020), 491–497.
    [4] S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, et al., Estimating the effects of non-pharmaceutical interventions on covid-19 in europe, Nature, 584 (2020), 257–261. doi: 10.1038/s41586-020-2405-7
    [5] S. Lai, N. W. Ruktanonchai, L.i Zhou, O. Prosper, W. Luo, J. R. Floyd, et al., Effect of non-pharmaceutical interventions to contain covid-19 in china, Nature, 585 (2020), 410–413. doi: 10.1038/s41586-020-2293-x
    [6] N. Perra, Non-pharmaceutical interventions during the covid-19 pandemic: A review, Phys. Rep., 2021.
    [7] World Health Organization (WHO). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV), (accessed June 15, 2021). Available from: https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-\regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-\coronavirus-(2019-ncov).
    [8] World Health Organization (WHO). WHO Director-General's opening remarks at the media briefing on COVID-19. 2020, (accessed June 15, 2021). Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-\–11-march-2020.
    [9] N. Moradian, H. D. Ochs, C. Sedikies, M. R. Hamblin, C. A. Camargo, J. A. Martinez, et al., The urgent need for integrated science to fight covid-19 pandemic and beyond, J. Transl. Med., 18 (2020), 1–7. doi: 10.1186/s12967-019-02189-8
    [10] R. Karia, I. Gupta, H. Khandait, A. Yadav, A. Yadav, Covid-19 and its modes of transmission, SN Comprehens. Clin. Med., (2020), pages 1–4.
    [11] V. C. C. Cheng, S. Wong, J. H. K. Chen, C. C. Y. Yip, V. W. M. Chuang, O. T. Y. Tsang, et al., Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (covid-19) due to sars-cov-2 in hong kong, Infect. Control Hosp. Epidemiol., 41 (2020), 493–498. doi: 10.1017/ice.2020.58
    [12] S. W. X. Ong, Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, et al., Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (sars-cov-2) from a symptomatic patient, Jama, 323 (2020), 1610–1612. doi: 10.1001/jama.2020.3227
    [13] World Health Organization (WHO). Scientific Brief: Transmission of SARS-CoV-2: implications for infection prevention precautions, (accessed August 3, 2021). Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-\precautions#:~:text=Transmission%20of%20SARS%2DCoV,%2C%20talks%20or%20sings.
    [14] National Center for Immunization, Science brief: Sars-cov-2 and surface (fomite) transmission for indoor community environments, In CDC COVID-19 Science Briefs [Internet]. Centers for Disease Control and Prevention (US), 2021.
    [15] A. I. Abioye, O. J. Peter, H. A. Ogunseye, F. A. Oguntolu, K. Oshinubi, A. A. Ibrahim, et al., Mathematical model of covid-19 in nigeria with optimal control, Results Phys., 28 (2021), 104598. doi: 10.1016/j.rinp.2021.104598
    [16] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of covid-19: a mathematical modelling study, Lancet Infect Dis., 20 (2020), 553–558. doi: 10.1016/S1473-3099(20)30144-4
    [17] D. Fanelli, F. Piazza, Analysis and forecast of covid-19 spreading in china, italy and france, Chaos Solitons Fract., 134 (2020), 109761. doi: 10.1016/j.chaos.2020.109761
    [18] B. Ivorra, M. R. Ferrández, M. Vela-Pérez, A. M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (covid-19) taking into account the undetected infections. the case of china, Commun. Nonlinear Sci. Numer. Simul., 88 (2020), 105303. doi: 10.1016/j.cnsns.2020.105303
    [19] C. Xu, Y. Pei, S. Liu, J. Lei, Effectiveness of non-pharmaceutical interventions against local transmission of covid-19: An individual-based modelling study, Infect. Disease Model., 6 (2021), 848–858. doi: 10.1016/j.idm.2021.06.005
    [20] H. Zhong, W. Wang, Mathematical analysis for covid-19 resurgence in the contaminated environment, Math. Biosci. Eng., 17 (2002), 6909–6927.
    [21] D. Aldila, Cost-effectiveness and backward bifurcation analysis on covid-19 transmission model considering direct and indirect transmission, Commun. Math. Biol. Neurosci., 2020 (2020), Article–ID, 49.
    [22] C. B. Ogbunugafor, M. D. Miller-Dickson, V. A. Meszaros, L. M. Gomez, A. L. Murillo, S. V. Scarpino, Variation in microparasite free-living survival and indirect transmission can modulate the intensity of emerging outbreaks, Sci. Rep., 10 (2020), 1–14. doi: 10.1038/s41598-019-56847-4
    [23] A. R. Tuite, D. N. Fisman, A. L. Greer, Mathematical modelling of covid-19 transmission and mitigation strategies in the population of ontario, canada, Cmaj, 192 (2020), E497–E505. doi: 10.1503/cmaj.200476
    [24] J. Cao, X. Jiang, B. Zhao, Mathematical modeling and epidemic prediction of covid-19 and its significance to epidemic prevention and control measures, J. Biomed. Res. Innov., 1 (2020), 1–19.
    [25] S. C. Anderson, A. M. Edwards, M. Yerlanov, N. Mulberry, J. E. Stockdale, S. A. Iyaniwura, et al., Quantifying the impact of covid-19 control measures using a bayesian model of physical distancing, PLoS Comput. Biol., 16 (2020), e1008274. doi: 10.1371/journal.pcbi.1008274
    [26] Z. Liu, P. Magal, O. Seydi, G. Webb, A covid-19 epidemic model with latency period, Infect. Dis. Model., 5 (2020), 323–337.
    [27] R. Musa, A. E. Ezugwu, G. C. E. Mbah, Assessment of the impacts of pharmaceutical and non-pharmaceutical intervention on covid-19 in south africa using mathematical model, medRxiv, 2020.
    [28] F. Ndaïrou, I. Area, J. J. Nieto, D. F. M. Torres, Mathematical modeling of covid-19 transmission dynamics with a case study of wuhan, Chaos Solitons Fract., 135 (2020), 109846. doi: 10.1016/j.chaos.2020.109846
    [29] C. J. Silva, C. Cruz, D. F. M. Torres, A. P. Muñuzuri, A. Carballosa, I. Area, et al., Optimal control of the covid-19 pandemic: controlled sanitary deconfinement in portugal, Sci. Rep., 11 (2021), 1–15. doi: 10.1038/s41598-020-79139-8
    [30] B. M. Behring, A. Rizzo, M. Porfiri, How adherence to public health measures shapes epidemic spreading: A temporal network model, Chaos, 31 (2021), 043115. doi: 10.1063/5.0041993
    [31] O. Alagoz, A. K. Sethi, B. W. Patterson, M. Churpek, N. Safdar, Effect of timing of and adherence to social distancing measures on covid-19 burden in the united states: A simulation modeling approach, Ann. Intern. Med., 174 (2021), 50–57, 2021. doi: 10.7326/M20-4096
    [32] K. K. Tong, J. H. Chen, E. W. Yu, A. M. S. Wu, Adherence to covid-19 precautionary measures: applying the health belief model and generalised social beliefs to a probability community sample, Appl. Psychol. Health Well-Being, 12 (2020), 1205–1223. doi: 10.1111/aphw.12230
    [33] J. A. F. van Loenhout, K. Vanderplanken, B. Scheen, S. Van den Broucke, I. Aujoulat, Determinants of adherence to covid-19 measures among the belgian population: an application of the protection motivation theory, Arch. Public Health, 79 (2021), 1–15. doi: 10.1186/s13690-020-00513-z
    [34] C. Xie, H. Zhao, K. Li, Z. Zhang, X. Lu, H. Peng, et al., The evidence of indirect transmission of sars-cov-2 reported in guangzhou, china, BMC Public Health, 20 (2020), 1–9. doi: 10.1186/s12889-019-7969-5
    [35] J. F. David, S. A. Iyaniwura, P. Yuan, Y. Tan, J. D. Kong, H. Zhu, Modeling the potential impact of indirect transmission on covid-19 epidemic, medRxiv, 2021.
    [36] A. Meiksin, Dynamics of covid-19 transmission including indirect transmission mechanisms: a mathematical analysis, Epidemiol. Infect., 148 (2020).
    [37] R. Memarbashi, S. M. Mahmoudi, A dynamic model for the covid-19 with direct and indirect transmission pathways, Math. Methods Appl. Sci., 44 (2021), 5873–5887. doi: 10.1002/mma.7154
    [38] J. M. Carcione, J. E. Santos, C. Bagaini, J. Ba, A simulation of a covid-19 epidemic based on a deterministic seir model, Front. Public Health, 8 (2020), 230. doi: 10.3389/fpubh.2020.00230
    [39] T. Ganyani, C. Kremer, D. Chen, A. Torneri, C. Faes, J. Wallinga, et al., Estimating the generation interval for coronavirus disease (covid-19) based on symptom onset data, march 2020, Euro. Surveil., 25 (2020), 2000257.
    [40] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in wuhan, china, of novel coronavirus–infected pneumonia, N. Engl. J. Med., 2020.
    [41] C. McAloon, Á. Collins, K. Hunt, A. Barber, A. W. Byrne, F. Butler, et al., Incubation period of covid-19: a rapid systematic review and meta-analysis of observational research, BMJ Open, 10 (2020), e039652. doi: 10.1136/bmjopen-2020-039652
    [42] O. Diekmann, J. A. P. Heesterbeek, J. AJ Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382.
    [43] J. H. Jones, Notes on r0. California: Department of Anthropological Sciences, 323: 1–19, 2007. Available from: https://web.stanford.edu/jhj1/teachingdocs/Jones-on-R0.pdf.
    [44] M. Rabiu, S. M. Adeniji, F. M. Jimoh, Numerical solution and stability analysis of a childhood-disease model with vaccination and relapse, Appl. Math. E-Notes, 20 (2020), 499–515.
    [45] M. Rabiu, R. Willie, N. Parumasur, Analysis of a virus-resistant hiv-1 model with behavior change in non-progressors, Biomath., 9 (2020), 2006143. doi: 10.11145/j.biomath.2020.06.143
    [46] M. Rabiu, R. Willie, N. Parumasur, Mathematical analysis of a disease-resistant model with imperfect vaccine, quarantine and treatment, Ricerche di Matematica, 69 (2020), 603–627. doi: 10.1007/s11587-020-00496-7
    [47] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [48] J. F. David, S. A. Iyaniwura, M. J. Ward, F. Brauer, A novel approach to modelling the spatial spread of airborne diseases: an epidemic model with indirect transmission, Math. Biosci. Eng., 17 (2020), 3294–3328. doi: 10.3934/mbe.2020188
    [49] M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, T. K. Kar, A model based study on the dynamics of covid-19: Prediction and control, Chaos Solitons Fract., 136 (2020), 109889. doi: 10.1016/j.chaos.2020.109889
    [50] B. N. Kantor, J. Kantor, Non-pharmaceutical interventions for pandemic covid-19: a cross-sectional investigation of us general public beliefs, attitudes, and actions, Front. Med., 7 (2020), 384. doi: 10.3389/fmed.2020.00384
    [51] D. Korzinski, S. Kurl, COVID-19 Carelessness: Which Canadians say pandemic threat is 'overblown'? And how are they behaving in turn, (accessed September 03, 2021), available from: https://angusreid.org/covid-19-serious-vs-overblown/.
    [52] M. A. Crane, K. M. Shermock, S. B. Omer, J. A. Romley, Change in reported adherence to nonpharmaceutical interventions during the covid-19 pandemic, april-november 2020, JAMA, 325 (2021), 883–885. doi: 10.1001/jama.2021.0286
    [53] S. Lee, T. Kim, E. Lee, C. Lee, H. Kim, H. Rhee, et al., Clinical course and molecular viral shedding among asymptomatic and symptomatic patients with sars-cov-2 infection in a community treatment center in the republic of korea, JAMA Int. Med., 180 (2020), 1447–1452. doi: 10.1001/jamainternmed.2020.3862
    [54] P. P. Liu, A. Blet, D. Smyth, H. Li, The science underlying covid-19: implications for the cardiovascular system, Circulation, 142 (2020), 68–78. doi: 10.1161/CIRCULATIONAHA.120.047549
    [55] M. Cascella, M. Rajnik, A. Aleem, S. Dulebohn, R. D. Napoli, Features, evaluation, and treatment of coronavirus (covid-19), StatPearls, 2021.
    [56] B. E. Young, S. W. X. Ong, S. Kalimuddin, J. G. Low, S. Y. Tan, J. Loh, et al., Epidemiologic features and clinical course of patients infected with sars-cov-2 in singapore, Jama, 323 (2020), 1488–1494. doi: 10.1001/jama.2020.3204
    [57] US department of Homeland security, Estimated Surface Decay of SARS-CoV-2 (virus that causes COVID-19), (accessed June 29, 2021). Available from: https://www.dhs.gov/science-and-technology/sars-calculator.
    [58] Z. Zhang, L. Zhang, Y. Wang, Covid-19 indirect contact transmission through the oral mucosa must not be ignored, J. Oral Pathol. Med., 49 (2020), 450. doi: 10.1111/jop.13019
    [59] J. Zhao, Q. Yuan, H. Wang, W. Liu, X. Liao, Y. Su, et al., Antibody responses to sars-cov-2 in patients with novel coronavirus disease 2019, Clin. Infect. Dis., 71 (2020), 2027–2034. doi: 10.1093/cid/ciaa344
    [60] Z. Du, X. Xu, Y. Wu, L. Wang, B. J. Cowling, L. A. Meyers, Serial interval of covid-19 among publicly reported confirmed cases, Emerging Infect. Dis., 26 (2020), 1341. doi: 10.3201/eid2606.200357
    [61] B. Tang, F. Xia, S. Tang, N. L. Bragazzi, Q. Li, X. Sun, et al., The effectiveness of quarantine and isolation determine the trend of the covid-19 epidemics in the final phase of the current outbreak in china, Int. J. Infect. Dis., 95 (2020), 288–293. doi: 10.1016/j.ijid.2020.03.018
    [62] L. Tindale, M. Coombe, J. E. Stockdale, E. Garlock, W. Y. V. Lau, M. Saraswat, et al., Transmission interval estimates suggest pre-symptomatic spread of covid-19, MedRxiv, 2020.
    [63] J. Zhang, M. Litvinova, W. Wang, Y. Wang, X. Deng, X. Chen, et al., Evolving epidemiology of novel coronavirus diseases 2019 and possible interruption of local transmission outside hubei province in china: a descriptive and modeling study, MedRxiv, 2020.
    [64] T. Liu, J. Hu, M. Kang, L. Lin, H. Zhong, J. Xiao, et al., Transmission dynamics of 2019 novel coronavirus (2019-ncov), 2020.
    [65] J. Arino, F. Brauer, P. Van Den Driessche, J. Watmough, J. Wu, A final size relation for epidemic models, Math. Biosci. Eng., 4 (2007), 159. doi: 10.3934/mbe.2007.4.159
    [66] F. Brauer, Age-of-infection and the final size relation, Math. Biosci. Eng, 5 (2008), 681–690. doi: 10.3934/mbe.2008.5.681
    [67] F. Brauer, Epidemic models with heterogeneous mixing and treatment, Bull. Math. Biol., 70 (2008), 1869. doi: 10.1007/s11538-008-9326-1
    [68] F. Brauer, A final size relation for epidemic models of vector-transmitted diseases, Infect. Dis. Model., 2 (2017), 12–20.
    [69] F. Brauer, A new epidemic model with indirect transmission, J. Biol. Dyn., 11(sup2) (2017), 285–293.
    [70] F. Brauer, The final size of a serious epidemic, Bull. Math. Biol., 81 (2019), 869–877. doi: 10.1007/s11538-018-00549-x
    [71] F. Brauer, C. Castillo-Chaavez, Mathematical models for communicable diseases, volume 84. SIAM, 2012.
    [72] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical models in epidemiology, 2018.
    [73] J. F. David, Epidemic models with heterogeneous mixing and indirect transmission, J. Biol. Dyn., 12 (2018), 375–399. doi: 10.1080/17513758.2018.1467506
    [74] The Sage Developers, SageMath, the Sage Mathematics Software System (Version x.y.z), 2021. Available from: https://www.sagemath.org.
    [75] World Health Organization (WHO), Tracking SARS-CoV-2 variants, (accessed July 7, 2021). Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3725) PDF downloads(183) Cited by(4)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog