Research article Special Issues

New insights on novel coronavirus 2019-nCoV/SARS-CoV-2 modelling in the aspect of fractional derivatives and fixed points

  • Correction on: Mathematical Biosciences and Engineering 19: 1588-1590
  • Received: 19 August 2021 Accepted: 16 September 2021 Published: 12 October 2021
  • Extended orthogonal spaces are introduced and proved pertinent fixed point results. Thereafter, we present an analysis of the existence and unique solutions of the novel coronavirus 2019-nCoV/SARS-CoV-2 model via fractional derivatives. To strengthen our paper, we apply an efficient numerical scheme to solve the coronavirus 2019-nCoV/SARS-CoV-2 model with different types of differential operators.

    Citation: Sumati Kumari Panda, Abdon Atangana, Juan J. Nieto. New insights on novel coronavirus 2019-nCoV/SARS-CoV-2 modelling in the aspect of fractional derivatives and fixed points[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8683-8726. doi: 10.3934/mbe.2021430

    Related Papers:

  • Extended orthogonal spaces are introduced and proved pertinent fixed point results. Thereafter, we present an analysis of the existence and unique solutions of the novel coronavirus 2019-nCoV/SARS-CoV-2 model via fractional derivatives. To strengthen our paper, we apply an efficient numerical scheme to solve the coronavirus 2019-nCoV/SARS-CoV-2 model with different types of differential operators.



    加载中


    [1] Coronavirus disease (COVID-19) pandemic. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
    [2] S. Riddell, S. Goldie, A. Hill, D. Eagles, T. W. Drew, The effect of temperature on persistence of SARS-CoV-2 on common surfaces, Virology J., 17 (2020).
    [3] N. van Doremalen, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, et al., Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, New Engl. J. Med., 382 (2020), 1564–1567. doi: 10.1056/NEJMc2004973
    [4] S. B. Kasloff, A. Leung, J. E. Strong, D. Funk, T. Cutts, Stability of SARS-CoV-2 on critical personal protective equipment, Sci. Rep., 11 (2021).
    [5] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Eng. J., 59 (2020), 2379–2389. doi: 10.1016/j.aej.2020.02.033
    [6] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [7] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1–13.
    [8] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92.
    [9] D. Kumar, F. Tchier, J. Singh, D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259
    [10] E. F. D. Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel Chaos Solit. Fract., 130 (2020), 109467.
    [11] A. Atangana, S. I. Araz, RETRACTED: New numerical method for ordinary differential equations: Newton polynomial, J. Comput. Appl. Math., 372 (2020), 112622. doi: 10.1016/j.cam.2019.112622
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
    [13] C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos, Solitons Fractals, 125 (2019), 194–200. doi: 10.1016/j.chaos.2019.05.014
    [14] K. Logeswari, C. Ravichandran, A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana-Baleanu derivative, Phys. A: Stat. Mech. Appl., 544 (2020), 123454. doi: 10.1016/j.physa.2019.123454
    [15] M. A. Alqudah, C. Ravichandran, T. Abdeljawad, N. Valliammal, New results on Caputo fractional-order neutral differential inclusions without compactness, Adv. Differ. Equations, 2019 (2019).
    [16] R. Subashini, K. Jothimani, K. S. Nisar, C. Ravichandran, New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alexandria Eng. J., 59 (2019), 2891–2899.
    [17] C. Ravichandran, K. Logeswari, S. K. Panda, K. S. Nisar, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos, Solitons Fractals, 139 (2020), 110012. doi: 10.1016/j.chaos.2020.110012
    [18] N. Valliammal, C. Ravichandran, K. S. Nisar, Solutions to fractional neutral delay differential nonlocal systems, Chaos, Solitons Fractals, 138 (2020), 109912. doi: 10.1016/j.chaos.2020.109912
    [19] D. Chalishajar, C. Ravichandran, S. Dhanalakshmi, R. Murugesu, Existence of fractional impulsive functional integro-differential equations in Banach spaces, Appl. Syst. Innovation, 2 (2019), 18. doi: 10.3390/asi2020018
    [20] S. K. Panda, Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2, Results in Physics, 19 (2020), 103433. doi: 10.1016/j.rinp.2020.103433
    [21] A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. doi: 10.1088/1402-4896/abfacc
    [22] A. Din, Y. Li, Levy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal-fractional Atangana-Baleanunu order model, Phys. Scr., 96 (2021), 124008. doi: 10.1088/1402-4896/ac1c1a
    [23] A. Din, Y. Li, The extinction and persistence of a stochastic model of drinking alcohol, Results Phys., 28 (2021), 104649. doi: 10.1016/j.rinp.2021.104649
    [24] A. Din, Y. Li, F. M. Khan, Z. U. Khan, P. Liu, On analysis of fractional order mathematical model of Hepatitis B using Atangana-Baleanu Caputo (ABC) derivative, Fractals (2021), 2240017.
    [25] A. Din, Y. Li, A. Yusuf, A. I. Ali, Caputo type fractional operator applied to Hepatitis B system, Fractals, (2021), 2240023.
    [26] T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017).
    [27] S. K. Panda, E. Karapinar, A. Atangana, A numerical schemes and comparisons for fixed point results with applications to the solutions of Volterra integral equations in dislocated extended $b$-metric space, Alexandria Eng. J., 59 (2020), 815–827. doi: 10.1016/j.aej.2020.02.007
    [28] S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos, Solitons Fractals, 130 (2020), 109439. doi: 10.1016/j.chaos.2019.109439
    [29] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. doi: 10.3390/math6100194
    [30] S. K. Panda, T. Abdeljawad, C. Ravichandran, Novel fixed point approach to Atangana-Baleanu fractional and $L_{p}$-Fredholm integral equations, Alexandria Eng.J., 59 (2020), 1959–1970. doi: 10.1016/j.aej.2019.12.027
    [31] S. K. Panda, T. Abdeljawad, K. K. Swamy, New numerical scheme for solving integral equations via fixed point method using distinct $(\omega-F)$-contractions, Alexandria Eng. J., 59 (2020), 2015–2026. doi: 10.1016/j.aej.2019.12.034
    [32] T. Abdeljawad, R. P. Agarwal, E. Karapinar, P. S. Kumari, Solutions of the nonlinear integral equationand fractional differential equation using the technique of a fixed point with a numerical experiment in extended $b$-metric space, Symmetry, 11 (2019), 686. doi: 10.3390/sym11050686
    [33] E. Karapinar, P. S. Kumari, D. Lateef, A New Approach to the Solution of the Fredholm Integral Equation via a Fixed Point on Extended b-Metric Spaces, Symmetry, 10 (2018), 512. doi: 10.3390/sym10100512
    [34] P. S. Kumari, D. Panthi, Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self-mappings, Fixed Point Theory Appl., 2016 (2016), 1–19. doi: 10.1186/s13663-015-0491-2
    [35] P. S. Kumari, I. R. Sarma, J. M. Rao, Metrization theorem for a weaker class of uniformities, Afrika Mat., 27 (2016), 667–672. doi: 10.1007/s13370-015-0369-9
    [36] Y. Zhou, Y. Hou, J. Shen, Y. Huang, W. Martin, F. Cheng, Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discovery, 6 (2020).
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2511) PDF downloads(98) Cited by(22)

Article outline

Figures and Tables

Figures(16)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog