Research article

Thoracic aorta stent grafts design in terms of biomechanical investigations into flexibility

  • Received: 23 November 2020 Accepted: 11 December 2020 Published: 22 December 2020
  • The present study aimed to design and optimize thoracic aorta stent grafts (SGs) based on the influence of geometric parameters on flexibility and durability. Five geometric parameters were selected, including strut height, strut number, strut radius, wire diameter, and graft thickness. Subsequently, 16 finite element (FE) models were established with an orthogonal design consisting of five factors and four levels. The influences of a single factor and all the geometric parameters' influence magnitude on the device flexibility were then determined. The results showed that all the other parameters had an opposite effect on global and local flexibility except for the wire diameter. The graft thickness exhibited the most remarkable impact on the global flexibility of SGs, while the strut radius influenced flexibility slightly. However, for the local flexibility analysis, the graft thickness became the least significant factor, and the wire diameter exerted the most significant influence. The SG with better global flexibility can be guided easily in the tortuous vessels, and better local flexibility improves the sealing effect between the graft and aortic arch. In conclusion, this study's results indicated that these geometric parameters exerted different influences on flexibility and durability, providing a strategy for designing thoracic aorta SGs, especially for the thoracic aortic arch diseases.

    Citation: Zongchao Liu, Linhui Wu, Junwei Yang, Fangsen Cui, Pei Ho, Liping Wang, Jianghui Dong, Gongfa Chen. Thoracic aorta stent grafts design in terms of biomechanical investigations into flexibility[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 800-816. doi: 10.3934/mbe.2021042

    Related Papers:

  • The present study aimed to design and optimize thoracic aorta stent grafts (SGs) based on the influence of geometric parameters on flexibility and durability. Five geometric parameters were selected, including strut height, strut number, strut radius, wire diameter, and graft thickness. Subsequently, 16 finite element (FE) models were established with an orthogonal design consisting of five factors and four levels. The influences of a single factor and all the geometric parameters' influence magnitude on the device flexibility were then determined. The results showed that all the other parameters had an opposite effect on global and local flexibility except for the wire diameter. The graft thickness exhibited the most remarkable impact on the global flexibility of SGs, while the strut radius influenced flexibility slightly. However, for the local flexibility analysis, the graft thickness became the least significant factor, and the wire diameter exerted the most significant influence. The SG with better global flexibility can be guided easily in the tortuous vessels, and better local flexibility improves the sealing effect between the graft and aortic arch. In conclusion, this study's results indicated that these geometric parameters exerted different influences on flexibility and durability, providing a strategy for designing thoracic aorta SGs, especially for the thoracic aortic arch diseases.


    加载中


    [1] V. S. Ramanath, J. K. Oh, T. M. Sundt, K. A. Eagle, Acute aortic syndromes and thoracic aortic aneurysm, Mayo Clin. Proc., 84 (2009), 465-481. doi: 10.1016/S0025-6196(11)60566-1
    [2] M. S. Makaroun, E. D. Dillavou, G. H. Wheatley, R. P. Cambria, Five-year results of endovascular treatment with the Gore TAG device compared with open repair of thoracic aortic aneurysms, J. Vasc. Surg., 47 (2008), 912-918. doi: 10.1016/j.jvs.2007.12.006
    [3] S. R. Walsh, T. Y. Tang, U. Sadat, J. Naik, M. E. Gaunt, R. B. Jonathan, et al., Endovascular stenting versus open surgery for thoracic aortic disease: Systematic review and meta-analysis of perioperative results, J. Vasc. Surg., 47 (2008), 1094-1098.e3. doi: 10.1016/j.jvs.2007.09.062
    [4] T. Baba, T. Ohki, Y. Kanaoka, K. Maeda, Clinical Outcomes of Left Subclavian Artery Coverage on Morbidity and Mortality During Thoracic Endovascular Aortic Repair for Distal Arch Aneurysms, World J. Surg., 39 (2015), 2812-2822. doi: 10.1007/s00268-015-3166-6
    [5] R. J. Feezor, W. A. Lee, Management of the Left Subclavian Artery during TEVAR, Semin. Vasc. Surg., 22 (2009), 159-164. doi: 10.1053/j.semvascsurg.2009.07.007
    [6] J. C. Ingrund, F. Nasser, S. G. Jesus-Silva, R. P. Limaco, F. L. Galastri, M. C. Burihan, et al., Hybrid procedures for complex thoracic aortic diseases, Braz. J. Cardiovasc. Surg., 25 (2010), 303-310. doi: 10.1590/S0102-76382010000300005
    [7] H. Wouter, F. J. V. Schlösser, F. L. Moll, B. E. Sumpio, B. E. Muhs, Thoracic endovascular aortic repair with the chimney graft technique, J. Vasc. Surg., 58 (2013), 502-511. doi: 10.1016/j.jvs.2013.03.043
    [8] C. M. T. Jost, Stenting in Europe, what lessons can we learn? Development of a stent classification system based on a survey of European clinical experiences, Catheterization Cardiovasc. Interventions, 45 (1998), 217-232. doi: 10.1002/(SICI)1097-0304(199811)45:3<217::AID-CCD1>3.0.CO;2-I
    [9] L. Petrini, F. Migliavacca, F. Auricchio, G. Dubini, Numerical investigation of the intravascular coronary stent flexibility, J. Biomech., 37 (2004), 495-501. doi: 10.1016/j.jbiomech.2003.09.002
    [10] N. Demanget, S. Avril, P. Badel, L. Orgéas, C. Geindreau, J. N. Albertini, et al., Computational comparison of the bending behavior of aortic stent-grafts, J. Mech. Behav. Biomed. Mater., 5 (2012), 272-282. doi: 10.1016/j.jmbbm.2011.09.006
    [11] C. Alfio, P. L. Faries, N. J. Morrissey, T. Victoria, J. A. Burks, E. C. Gravereaux, et al., Predicting iliac limb occlusions after bifurcated aortic stent grafting: anatomic and device-related causes, J. Vasc. Surg., 36 (2002), 679-684. doi: 10.1016/S0741-5214(02)00117-9
    [12] S. R. Dixon, Stent longitudinal flexibility: A comparison of 13 stent designs before and after balloon expansion, Catheter Cardiovasc. Intervention, 50 (2000), 120-124. doi: 10.1002/(SICI)1522-726X(200005)50:1<120::AID-CCD26>3.0.CO;2-T
    [13] W. Q. Wang, D. K. Liang, D. Z. Yang, M. Qi, Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method, J. Biomech., 39 (2006), 21-32. doi: 10.1016/j.jbiomech.2004.11.003
    [14] F. R. Arko, W. A. Lee, B. B. Hill, P. Cipriano, T. J. Fogarty, C. K. Zarins, Increased Flexibility of AneuRx Stent-Graft Reduces Need for Secondary Intervention following Endovascular Aneurysm Repair, J. Endovascular Ther., 8 (2001), 583-591.
    [15] N. Demanget, A. Duprey, P. Badel, L. Orgéas, S. Avril, C. Geindreau, et al., Finite element analysis of the mechanical performances of 8 marketed aortic stent-grafts, J. Endovascular Ther., 20 (2013), 523-535. doi: 10.1583/12-4063.1
    [16] J. N. Albertini, M. A. DeMasi, J. Macierewicz, R. E. Idrissi, B. R. Hopkinson, C. Clement, et al., Aorfix Stent Graft for Abdominal Aortic Aneurysms Reduces the Risk of Proximal Type 1 Endoleak in Angulated Necks: Bench-Test Study, Vascular, 13 (2005), 321-326. doi: 10.1258/rsmvasc.13.6.321
    [17] A. R. Weale, K. Balasubramaniam, J. Hardman, M. Horrocks, Use of the AorfixTM stent graft in patients with tortuous iliac anatomy, J. Cardiovasc. Surg., 51 (2010), 461-466.
    [18] F. S. Cui, H. P. Lee, C. Lu, P. Chai, Effects of balloon length and compliance on vascular stent expansion, Int. J. Appl. Mech., 2 (2010), 681-697. doi: 10.1142/S1758825110000718
    [19] F. Kabinejadian, F. Cui, B. Su, A. Danpinid, H. Pei, H. L. Leo, Effects of a carotid covered stent with a novel membrane design on the blood flow regime and hemodynamic parameters distribution at the carotid artery bifurcation, Med. Biol. Eng. Comput., 53 (2015), 165-177. doi: 10.1007/s11517-014-1222-2
    [20] A. Karimi, M. Navidbakhsh, H. Yamada, R. Razaghi, A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery, Med. Biol. Eng. Comput., 52 (2014), 589-599. doi: 10.1007/s11517-014-1163-9
    [21] C. Kleinstreuer, Z. Li, C. A. Basciano, S. Seelecke, M. A. Farber, Computational mechanics of Nitinol stent grafts, J. Biomech., 41 (2008), 2370-2378. doi: 10.1016/j.jbiomech.2008.05.032
    [22] S. D. Bock, F. Iannaccone, G. D. Santis, M. D. Beule, D. V. Loo, D. Devos, et al., Virtual evaluation of stent graft deployment: A validated modeling and simulation study, J. Mech. Behav. Biomed. Mater., 13 (2012), 129-139. doi: 10.1016/j.jmbbm.2012.04.021
    [23] G. P. Kumar, F. Cui, A. Danpinid, B. Su, J. K. F. Hon, H. L. Leo, Design and finite element-based fatigue prediction of a new self-expandable percutaneous mitral valve stent, Comput. Aided Des., 45 (2013), 1153-1158. doi: 10.1016/j.cad.2013.05.003
    [24] N. Demanget, L. Orgéas, P. Badel, S. Avril, C. Geindreau, J. N. Albertini, et al., Severe Bending of Two Aortic Stent-Grafts: An Experimental and Numerical Mechanical Analysis, Ann. Biomed. Eng., 40 (2012), 2674-2686. doi: 10.1007/s10439-012-0618-0
    [25] K. Mori, T. Saito, Effects of Stent Structure on Stent Flexibility Measurements, Ann. Biomed. Eng., 33 (2005), 733-742. doi: 10.1007/s10439-005-2807-6
    [26] G. P. Kumar, L. Mathew, Self-expanding aortic valve stent-material optimization, Comput. Biol. Med., 42 (2012), 1060-1063. doi: 10.1016/j.compbiomed.2012.08.007
    [27] W. Wu, L. Petrini, D. Gastaldi, T. Villa, M. Vedani, E. Lesma, et al., Finite element shape optimization for biodegradable magnesium alloy stents, Ann. Biomed. Eng., 38 (2010), 2829-2840. doi: 10.1007/s10439-010-0057-8
    [28] H. H. Zhang, H. Q. Feng, J. Liu, K. Wang, Simulation on flexibility of vascular stent and grey correlation analysis, J. Med. Biomech., 31 (2016), 206-212.
    [29] Y. Liu, G. Zhu, H. Yang, C. Wang, P. Zhang, G. Han, Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method, J. Mech. Behav. Biomed. Mater., 77 (2018), 157-163. doi: 10.1016/j.jmbbm.2017.08.023
    [30] L. Gu, S. Santra, R. A. Mericle, A. V. Kumar, Finite element analysis of covered microstents, J. Biomech., 38 (2005), 1221-1227. doi: 10.1016/j.jbiomech.2004.06.008
    [31] I. C. T. Santos, A. Rodrigues, L. Figueiredo, L. A. Rocha, J. M. R. S. Tavares, Mechanical properties of stent-graft materials, Proceedings of the Institution of Mechanical Engineers Part L J. Mater. Des. Appl., 226 (2012), 330-341.
    [32] A. Wanhainen, R. Nyman, M. O. Eriksson, First report of a late type Ⅲ endoleak from fabric tears of a Zenith stent graft, J. Vasc. Surg., 48 (2008), 723-726. doi: 10.1016/j.jvs.2008.03.047
    [33] I. Y. Shin, Y. G. Chung, W. H. Shin, S. B. Im, B. T. Kim, A Morphometric Study on Cadaveric Aortic Arch and Its Major Branches in 25 Korean Adults: The Perspective of Endovascular Surgery, J. Korean Neurosurg. Soc., 44 (2008), 78-83. doi: 10.3340/jkns.2008.44.2.78
    [34] H. H. Choi, S. M. Hwang, Y. H. Kang, J. Kim, B. S. Kang, Comparison of Implicit and Explicit Finite-Element Methods for the Hydroforming Process of an Automobile Lower Arm, Int. J. Adv. Manuf. Technol., 20 (2002), 407-413. doi: 10.1007/s001700200170
  • mbe-18-01-042-supplementary.pdf
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3700) PDF downloads(313) Cited by(10)

Article outline

Figures and Tables

Figures(10)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog