Review Special Issues

Non-equilibrium statistical physics, transitory epigenetic landscapes, and cell fate decision dynamics

  • Received: 09 August 2020 Accepted: 02 November 2020 Published: 10 November 2020
  • Statistical physics provides a useful perspective for the analysis of many complex systems; it allows us to relate microscopic fluctuations to macroscopic observations. Developmental biology, but also cell biology more generally, are examples where apparently robust behaviour emerges from highly complex and stochastic sub-cellular processes. Here we attempt to make connections between different theoretical perspectives to gain qualitative insights into the types of cell-fate decision making processes that are at the heart of stem cell and developmental biology. We discuss both dynamical systems as well as statistical mechanics perspectives on the classical Waddington or epigenetic landscape. We find that non-equilibrium approaches are required to overcome some of the shortcomings of classical equilibrium statistical thermodynamics or statistical mechanics in order to shed light on biological processes, which, almost by definition, are typically far from equilibrium.

    Citation: Anissa Guillemin, Michael P. H. Stumpf. Non-equilibrium statistical physics, transitory epigenetic landscapes, and cell fate decision dynamics[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7916-7930. doi: 10.3934/mbe.2020402

    Related Papers:

  • Statistical physics provides a useful perspective for the analysis of many complex systems; it allows us to relate microscopic fluctuations to macroscopic observations. Developmental biology, but also cell biology more generally, are examples where apparently robust behaviour emerges from highly complex and stochastic sub-cellular processes. Here we attempt to make connections between different theoretical perspectives to gain qualitative insights into the types of cell-fate decision making processes that are at the heart of stem cell and developmental biology. We discuss both dynamical systems as well as statistical mechanics perspectives on the classical Waddington or epigenetic landscape. We find that non-equilibrium approaches are required to overcome some of the shortcomings of classical equilibrium statistical thermodynamics or statistical mechanics in order to shed light on biological processes, which, almost by definition, are typically far from equilibrium.


    加载中


    [1] P. Nurse, J. Hayles, The cell in an era of systems biology, Cell, 144 (2011), 850-854, doi: 10.1016/j.cell.2011.02.045
    [2] P. Smadbeck, M. P. H. Stumpf, Coalescent models for developmental biology and the spatiotemporal dynamics of growing tissues, J. R. Soc., Interface/R. Soc., 13 (2016), 20160112. doi: 10.1098/rsif.2016.0112
    [3] J. Briscoe, S. Small, Morphogen rules: design principles of gradient-mediated embryo patterning, Development, 142 (2015), 3996-4009. doi: 10.1242/dev.129452
    [4] D. S. Goodsell, The Machinery of Life, Copernicus Books, 2009.
    [5] J. Jost, Dynamical Systems Examples of Complex Behaviour, Springer, 2005.
    [6] P. D. W. Kirk, D. M. Y. Rolando, A. L. MacLean, M. P. H. Stumpf, Conditional random matrix ensembles and the stability of dynamical systems, New J. Phys., 17 (2015), 083025. doi: 10.1088/1367-2630/17/8/083025
    [7] C. Kwon, P. Ao, D. J. Thouless, Structure of stochastic dynamics near fixed points, Proc. Nat. Acad. Sci., 102 (2005), 13029-13033. doi: 10.1073/pnas.0506347102
    [8] H. Qian, Cellular biology in terms of stochastic nonlinear biochemical dynamics, J. Stat. Phys., 141 (2010), 990-1013. doi: 10.1007/s10955-010-0093-7
    [9] I. Glauche, L. Thielecke, I. Roeder, Cellular aging leads to functional heterogeneity of hematopoietic stem cells: a modeling perspective, Aging Cell, 10 (2011), 457-465. doi: 10.1111/j.1474-9726.2011.00692.x
    [10] V. Chickarmane, V. Olariu, C. Peterson, Probing the role of stochasticity in a model of the embryonic stem cell: heterogeneous gene expression and reprogramming efficiency, BMC Syst. Biol. 6 (2012), 98. doi: 10.1186/1752-0509-6-98
    [11] U. Herbach, Modélisation stochastique de l'expression des gènes et inf erence de réseaux de régulation, 184.
    [12] B. Zhang, P. G. Wolynes, Stem cell differentiation as a many-body problem, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), 10185-10190. doi: 10.1073/pnas.1408561111
    [13] J. Lei, S. A. Levin, Q. Nie, Mathematical model of adult stem cell regeneration with cross-talk between genetic and epigenetic regulation, Proc. Natl. Acad. Sci. U.S.A., 111 (2014), E880-887. doi: 10.1073/pnas.1324267111
    [14] A. L. MacLean, T. Hong, Q. Nie, Exploring intermediate cell states through the lens of single cells, Curr. Opin. Syst. Biol., 9 (2018), 32-41. doi: 10.1016/j.coisb.2018.02.009
    [15] N. P. Gao, O. Gandrillon, A. Páldi, U. Herbach, R. Gunawan, Universality of cell differentiation trajectories revealed by a reconstruction of transcriptional uncertainty landscapes from single-cell transcriptomic data, preprint, bioRxiv, 2020. Available: http://biorxiv.org/lookup/doi/10.1101/2020.04.23.056069.
    [16] N. Moris, S. Edri, D. Seyres, R. Kulkarni, A. F. Domingues, T. Balayo, et al., Histone acetyltransferase KAT2A stabilizes pluripotency with control of transcriptional heterogeneity: transcriptional heterogeneity and fate transitions, Stem Cells, 36 (2018), 1828-1838. doi: 10.1002/stem.2919
    [17] A. Guillemin, R. Duchesne, F. Crauste, S. Gonin-Giraud, O. Gandrillon, Drugs modulating stochastic gene expression affect the erythroid differentiation process, PLOS ONE, 14 (2019), e0225166. doi: 10.1371/journal.pone.0225166
    [18] A. Coulon, C. C. Chow, R. H. Singer, D. R. Larson, Eukaryotic transcriptional dynamics: from single molecules to cell populations, Nat. Rev. Genet., 14 (2013), 572-584. doi: 10.1038/nrg3484
    [19] Z. Singer, J. Yong, J. Tischler, J. Hackett, A. Altinok, M. Surani, et al., Dynamic heterogeneity and DNA methylation in embryonic stem cells, Mol. Cell, 55 (2014), 319-331. doi: 10.1016/j.molcel.2014.06.029
    [20] K. Bystricky, Chromosome dynamics and folding in eukaryotes: Insights from live cell microscopy, FEBS Lett., 589 (2015), 3014-3022. doi: 10.1016/j.febslet.2015.07.012
    [21] P. Dong, Z. Liu, Shaping development by stochasticity and dynamics in gene regulation, Open Biol., 7 (2017), 170030. doi: 10.1098/rsob.170030
    [22] A. C. Babtie, P. D. W. Kirk, M. P. H. Stumpf, Topological sensitivity analysis for systems biology., Proc. Natl. Acad. Sci. U.S.A, 111 (2014), 18507-18512.
    [23] P. S. Stumpf, R. C. Smith, M. Lenz, A. Schuppert, F.-J. Müller, A. Babtie, et al., Stem cell differentiation as a non-Markov stochastic process, Cell Syst., 5 (2017), 268-282.e7. doi: 10.1016/j.cels.2017.08.009
    [24] E. Clark, M. Akam, Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network, eLife, 5 (2016), e18215. doi: 10.7554/eLife.18215
    [25] R. Perez-Carrasco, P. Guerrero, J. Briscoe, K. M. Page, Intrinsic noise profoundly alters the dynamics and steady state of morphogen-controlled bistable genetic switches, PLoS Comput. Biol., 12 (2016), e1005154. doi: 10.1371/journal.pcbi.1005154
    [26] P. K. Maini, T. E. Woolley, R. E. Baker, E. A. Gaffney, S. S. Lee, Turing's model for biological pattern formation and the robustness problem, Interface Focus, 2 (2012), 487-496. doi: 10.1098/rsfs.2011.0113
    [27] N. S. Scholes, D. Schnoerr, M. Isalan, M. P. Stumpf, A comprehensive network atlas reveals that turing patterns are common but not robust, Cell Syst., 9 (2019), 243-257.e4. doi: 10.1016/j.cels.2019.07.007
    [28] R. Thom, Structural Stability and Morphogenesis: an Outline of a General Theory of Models, Addison-Wesley Publishing, Reading, Massachusetts, 1989.
    [29] M. Demazure, Bifurcations and Catastrophes: Geometry of Solutions to Nonlinear Problems, Universitext, Springer, Berlin, 2000.
    [30] P. François, L. Jutras-Dubé, Landscape, bifurcations, geometry for development, Curr. Opin. Syst. Biol., 11 (2018), 129-136. doi: 10.1016/j.coisb.2018.06.001
    [31] E. C. Zeeman, Stability of dynamical systems, Nonlinearity, 1 (1999), 115.
    [32] C. H. Waddington, The Strategy of the Genes, Allen & Unwin, 1957.
    [33] N. Moris, C. Pina, A. M. Arias, Transition states and cell fate decisions in epigenetic landscapes, Nat. Rev. Genet., 17 (2016), 693-703. doi: 10.1038/nrg.2016.98
    [34] S. Huang, Cell lineage determination in state space: a systems view brings flexibility to dogmatic canonical rules, PLoS Biol., 8 (2010), e1000380. doi: 10.1371/journal.pbio.1000380
    [35] J. X. Zhou, M. D. S. Aliyu, E. Aurell, S. Huang, Quasi-potential landscape in complex multi-stable systems, J. R. Soc. Interface, 9 (2012), 3539-3553. doi: 10.1098/rsif.2012.0434
    [36] R. D. Brackston, E. Lakatos, M. P. H. Stumpf, Transition state characteristics during cell differentiation, PLoS Comput. Biol., 14 (2018), e1006405. doi: 10.1371/journal.pcbi.1006405
    [37] R. D. Brackston, A. Wynn, M. P. H. Stumpf, Construction of quasipotentials for stochastic dynamical systems: An optimization approach, Phys. Rev. E, 98 (2018), 022136.
    [38] J. Wang, L. Xu, E. Wang, Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations, Proc. Natl. Acad. Sci., 105 (2008), 12271-12276. doi: 10.1073/pnas.0800579105
    [39] G. Anderson, B. Verd, J. Jaeger, Drawing to extend waddington's epigenetic landscape, Leonardo, 53 (2020), 256-262. doi: 10.1162/leon_a_01738
    [40] J. Weber, The morse-witten complex via dynamical systems, Expositiones Math., 24 (2006), 127-159. doi: 10.1016/j.exmath.2005.09.001
    [41] S. Huang, Non-genetic heterogeneity of cells in development: more than just noise, Development, 136 (2009), 3853-3862. doi: 10.1242/dev.035139
    [42] E. Ventre, T. Espinasse, C. E. Bréhier, V. Calvez, T. Lepoutre, O. Gandrillon, Reduction of a stochastic model of gene expression: Lagrangian dynamics gives access to basins of attraction as cell types and metastabilty, preprint, bioRxiv.
    [43] J. Jost, Riemannian Geometry and Geometric Analysis, 6th edition, Universitext, Springer, Heidelberg, 2011.
    [44] H. P. de Vladar, N. H. Barton, The contribution of statistical physics to evolutionary biology, Trends Ecol. Evol., 26 (2011), 424-432. doi: 10.1016/j.tree.2011.04.002
    [45] S. S. Mc Mahon, O. Lenive, S. Filippi, M. P. H. Stumpf, Information processing by simple molecular motifs and susceptibility to noise, J. R. Soc. Interface, 12 (2015), 20150597. doi: 10.1098/rsif.2015.0597
    [46] T. Jetka, K. Nienałtowski, S. Filippi, M. P. H. Stumpf, M. Komorowski, An information-theoretic framework for deciphering pleiotropic and noisy biochemical signaling, Nat. Commun., 9 (2018), 4591. doi: 10.1038/s41467-018-07085-1
    [47] P. Szymańska-Rożek, D. Villamaina, J. Miȩkisz, A. M. Walczak, Dissipation in non-steady state regulatory circuits, Entropy, 21 (2019), e21121212.
    [48] M. Sasai, P. G. Wolynes, Stochastic gene expression as a many-body problem, Proc. Natl. Acad. Sci., 100 (2003), 2374-2379. doi: 10.1073/pnas.2627987100
    [49] A. Benecke, Gene regulatory network inference using out of equilibrium statistical mechanics, HFSP J., 2 (2010), 183-188.
    [50] J. Garcia-Ojalvo, A. Martinez Arias, Towards a statistical mechanics of cell fate decisions, Curr. Opin. Genet. Dev., 22 (2012), 619-626.
    [51] B. D. MacArthur, I. R. Lemischka, Statistical mechanics of pluripotency, Cell, 154 (2013), 484-489. doi: 10.1016/j.cell.2013.07.024
    [52] D. Chandler, Introduction To Modern Statistical Mechanics, Oxford University Press, 1987.
    [53] P. Attard, Non-Equilibrium Thermodynamics And Statistical Mechanics: Foundations And Applications, Oxford Univiversity Press, 2012.
    [54] S. Muñoz Descalzo, A. Martinez Arias, The structure of Wntch signalling and the resolution of transition states in development, Semin. Cell Dev. Biol., 23 (2012), 443-449.
    [55] V. Bergen, M. Lange, S. Peidli, F. A. Wolf, F. J. Theis, Generalizing RNA velocity to transient cell states through dynamical modeling, Nat. Biotechnol., 14 (2020), 1-7.
    [56] T. Hastie, R. Tibshirani, J. Friedman, The Elements Of Statistical Learning: Data Mining, Inference, And Prediction, Springer, 2009.
    [57] S. Gao, G. V. Steeg, A. Galstyan, Efficient estimation of mutual information for strongly dependent variables, in Artificial Intelligence and Statistics, (2015), 277-286.
    [58] T. W. Thorne, M. P. H. Stumpf, M. P. H. Stumpf, Inference of temporally varying Bayesian networks, Bioinformatics, 28 (2012), 3298-3305. doi: 10.1093/bioinformatics/bts614
    [59] S. S. Mc Mahon, A. Sim, S. Filippi, R. Johnson, J. Liepe, D. Smith, et al., Information theory and signal transduction systems: from molecular information processing to network inference, Semin. Cell Dev. Biol., 35 (2014), 98-108. doi: 10.1016/j.semcdb.2014.06.011
    [60] T. E. Chan, M. P. H. Stumpf, A. C. Babtie, Gene regulatory network inference from single-cell data using multivariate information measures, Cell Syst., 5 (2017), 251-267.e3. doi: 10.1016/j.cels.2017.08.014
    [61] A. Smith, Formative pluripotency: the executive phase in a developmental continuum, Development, 144 (2017), 365-373. doi: 10.1242/dev.142679
    [62] R. D. Brackston, E. Lakatos, M. P. H. Stumpf, Transition state characteristics during cell differentiation, PLOS Comput. Biol., 14 (2018), e1006405. doi: 10.1371/journal.pcbi.1006405
    [63] E. D. Siggia, Inter-cellular interactions and patterns: vertebrate development and embryonic stem cells, preprint, arXiv: 1801.09142v1.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3722) PDF downloads(158) Cited by(6)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog