Research article Special Issues

Extended SEIQR type model for COVID-19 epidemic and data analysis

  • Received: 09 August 2020 Accepted: 19 October 2020 Published: 02 November 2020
  • An extended SEIQR type model is considered in order to model the COVID-19 epidemic. It contains the classes of susceptible individuals, exposed, infected symptomatic and asymptomatic, quarantined, hospitalized and recovered. The basic reproduction number and the final size of epidemic are determined. The model is used to fit available data for some European countries. A more detailed model with two different subclasses of susceptible individuals is introduced in order to study the influence of social interaction on the disease progression. The coefficient of social interaction $K$ characterizes the level of social contacts in comparison with complete lockdown ($K = 0$) and the absence of lockdown ($K = 1$). The fitting of data shows that the actual level of this coefficient in some European countries is about 0.1, characterizing a slow disease progression. A slight increase of this value in the autumn can lead to a strong epidemic burst.

    Citation: Swarnali Sharma, Vitaly Volpert, Malay Banerjee. Extended SEIQR type model for COVID-19 epidemic and data analysis[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7562-7604. doi: 10.3934/mbe.2020386

    Related Papers:

  • An extended SEIQR type model is considered in order to model the COVID-19 epidemic. It contains the classes of susceptible individuals, exposed, infected symptomatic and asymptomatic, quarantined, hospitalized and recovered. The basic reproduction number and the final size of epidemic are determined. The model is used to fit available data for some European countries. A more detailed model with two different subclasses of susceptible individuals is introduced in order to study the influence of social interaction on the disease progression. The coefficient of social interaction $K$ characterizes the level of social contacts in comparison with complete lockdown ($K = 0$) and the absence of lockdown ($K = 1$). The fitting of data shows that the actual level of this coefficient in some European countries is about 0.1, characterizing a slow disease progression. A slight increase of this value in the autumn can lead to a strong epidemic burst.


    加载中


    [1] World Health Organization, Coronavirus disease 2019. cited March 15, 2020. Available from: https://www.who.int/health-topics/coronavirus.
    [2] Editorial, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health- The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020), 264-266.
    [3] Worldometer. Available from: https://www.worldometers.info/coronavirus.
    [4] World Health Organization, Population-based age-stratified seroepidemiological investigation protocol for covid-19 virus infection, 2020.
    [5] N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of non-pharmaceutical interventions (npis) to reduce covid-19 mortality and healthcare demand, London: Imperial College COVID-19 Response Team, 10 (2020), 10.25561/77482.
    [6] B. Tang, N. L. Bragazzi, Q. Li, S. Tang, Y. Xiao, J. Wu, An updated estimation of the risk of transmission of the novel coronavirus (2019-ncov), Infect. Dis. Model., 5 (2020), 248-255.
    [7] B. J. Quilty, S. Clifford, S. Flasche, R. M. Eggo, Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Euro. Surveil., 25 (2020), 200080.
    [8] M. Shen, Z. Peng, Y. Xiao, L Zhang, Modelling the epidemic trend of the 2019 novel coronavirus outbreak in china, bioRxiv, 2020.
    [9] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu, J. Edmunds, S. Funk, et al., Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553-558. doi: 10.1016/S1473-3099(20)30144-4
    [10] J. Yuan, M. Li, G. Lv, Z. K. Lu, Monitoring transmissibility and mortality of COVID-19 in Europe, Int. J. Infec. Dis., 95 (2020), 311-325. doi: 10.1016/j.ijid.2020.03.050
    [11] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. D. Filippo, A. D. Matteo, et al., Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., (2020), 1-6.
    [12] Q. Lin, S. Zhao, D. Gao, Y. Lou, S. Yang, S. S. Musa, et al., A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action, Int. J. Infect. Dis., 93 (2020), 211-216. doi: 10.1016/j.ijid.2020.02.058
    [13] T. Chen, J. Rui, Q. Wang, Z. Zhao, J. Cui, L. Yin, A mathematical model for simulating the phase-based transmissibility of a novel coronavirus, Infect. Dis. Poverty, 9 (2020) 1-8.
    [14] J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study, Lancet, 395 (2020), 689-697.
    [15] B. Tang, X. Wang, Q. Li, N. L. Bragazzi, S. Tang, Y. Xiao, et al., Estimation of the transmission risk of the 2019-nCov and its implication for public health interventions, J. Clin. Med., 9 (2020), 462.
    [16] J. M. Read, J. R. Bridgen, D. A. Cummings, A. Ho, C. P. Jewell, Novel coronavirus 2019-nCov: early estimation of epidemiological parameters and epidemic predictions, medRxiv, 2020.
    [17] S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214-217. doi: 10.1016/j.ijid.2020.01.050
    [18] J. Chen, Pathogenicity and transmissibility of 2019-nCoV - a quick overview and comparison with other emerging viruses, Microb. infect., 22 (2020), 69-71. doi: 10.1016/j.micinf.2020.01.004
    [19] R. Singh, R. Adhikari, Age-structured impact of social distancing on the covid-19 epidemic in India, arXiv preprint, (2020), arXiv: 2003.12055.
    [20] U, Avila-Ponce de Leon, A, G. C. Perez, E, Avila-Vales, An SEIARD epidemic model for COVID-19 in Mexico: mathematical analysis and state-level forecast, Chaos Solitons Fractals, 140 (2020), 110165.
    [21] J. H. Rojas, M. Paredes, M. Banerjee, O. Akman, A. Mubayi, Mathematical Modeling & the Transmission Dynamics of SARS-CoV-2 in Cali, Colombia: Implications to a 2020 Outbreak & public health preparedness, medRxiv, (2020), https://doi.org/10.1101/2020.05.06.20093526.
    [22] E. Shim, G. Chowell, Regional variability in time-varying transmission potential of COVID-19 in South Korea, medRxiv, (2020), https://doi.org/10.1101/2020.07.21.20158923.
    [23] A. Srivastava, G. Chowell, Understanding Spatial Heterogeneity of COVID-19 Pandemic Using Shape Analysis of Growth Rate Curves, medRxiv, (2020), https://doi.org/10.1101/2020.05.25.20112433.
    [24] Y. Belgaid, M. Helal, E. Venturino, Analysis of a model for Coronavirus spread, Mathematics, 8(5), (2020), 820.
    [25] J. Dolbeault, G. Turinici, Heterogeneous social interactions and the Covid-19 lockdown outcome in a multi-group SEIR model, Math. Model. Nat. Phenom., 15 (2020), 36.
    [26] M. Kochanczyk, F. Grabowski, T. Lipniacki, Dinamics of Covid-19 pandemic at constant and time-dependent contact rates, Math. Model. Nat. Phenom., 15 (2020), 28.
    [27] S. G. Krantz, P. Polyakov, A. S. R. S. Rao, True epidemic growth construction through harmonic analysis, J. Theor. Biol., 494, (2020), 110243.
    [28] S. Sinha, Epidemiological dynamics of the COVID-19 pandemic in India: an interim assessment, Stat. Appl., 18 (2020), 333-350.
    [29] H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, 2003.
    [30] A. V. Emmanuelle, Lifting the COVID-19 lockdown: different scenarios for France, Math. Model. Nat. Phenom., (2020), In press.
    [31] L. D. Domenico, G. Pullano, C. E. Sabbatini, P. Y. Boelle, V. Colizza, Expected impact of reopening schools after lockdown on COVID-19 epidemic in Ile-de-France, medRxiv, (2020), https://doi.org/10.1101/2020.05.08.20095521.
    [32] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
    [33] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
    [34] F. Brauer, C. Castillo-Chavez, Z. Feng, Mathematical Models in Epidemiology, Springer, New York, 2019.
    [35] M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
    [36] V. Andreasen, The final size of an epidemic and its relation to the basic reproduction number, Bull. Math.Biol., 73 (2011), 2305-2321. doi: 10.1007/s11538-010-9623-3
    [37] R. J. Freund, W. J. Wilson, D. L. Mohr, Statistical Methods, Elsevier, Canada, 2010.
    [38] C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, USA, 1999.
    [39] D. Caccavo, Chinese and Italian COVID-19 outbreaks can be correctly described by a modified SIRD model, medRxiv, (2020), https://doi.org/10.1101/2020.03.19.20039388.
    [40] N. M. Duggan, S. M. Ludy, B. C. Shannon, A. T. Reisner, S. R. Wilcox, Is novel coronavirus 2019 reinfection possible? Interpreting dynamic SARS-CoV-2 test results through a case report, Am. J. Emerg. Med., (2020), in press.
    [41] V. Capasso, S. Gabriella, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61. doi: 10.1016/0025-5564(78)90006-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4843) PDF downloads(361) Cited by(19)

Article outline

Figures and Tables

Figures(13)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog