Research article

A numerical model applied to the simulation of cardiovascular hemodynamics and operating condition of continuous-flow left ventricular assist device

  • Received: 13 July 2020 Accepted: 14 October 2020 Published: 30 October 2020
  • The mathematical modeling of the cardiovascular system is a simple and noninvasive method to comprehend hemodynamics and the operating mechanism of the mechanical circulatory assist device. In this study, a numerical model was developed to simulate hemodynamics under different conditions and to evaluate the operating condition of continuous-flow left ventricular assist device (LVAD). The numerical model consisted of a cardiovascular lumped parameter (CLP) model, a baroreflex model, and an LVAD model. The CLP model was established to simulate the human cardiovascular system including the left heart, right heart, systemic circulation, and pulmonary circulation. The baroreflex model was used to regulate left and right ventricular end-systolic elastances, systemic vascular resistance, and heart rate. The centrifugal pump HeartMate Ⅲ used as an example to simulate the rotary pump dynamics at different operating speeds. Simulation results show that hemodynamics under normal, left ventricular failure and different levels of pump support conditions can be reproduced by the numerical model. Based on simulation results, HeartMate Ⅲ operating speed can be maintained between 3600 rpm and 4400 rpm to avoid pump regurgitation and ventricular suction. Additionally, in the simulation system, the HeartMate Ⅲ operating speed should be between 3600 rpm and 3800 rpm to provide optimal physiological perfusion. Thus, the developed numerical model is a feasible solution to simulate hemodynamics and evaluate the operating condition of continuous-flow LVAD.

    Citation: Hongtao Liu, Shuqin Liu, Xiaoxu Ma, Yunpeng Zhang. A numerical model applied to the simulation of cardiovascular hemodynamics and operating condition of continuous-flow left ventricular assist device[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 7519-7543. doi: 10.3934/mbe.2020384

    Related Papers:

  • The mathematical modeling of the cardiovascular system is a simple and noninvasive method to comprehend hemodynamics and the operating mechanism of the mechanical circulatory assist device. In this study, a numerical model was developed to simulate hemodynamics under different conditions and to evaluate the operating condition of continuous-flow left ventricular assist device (LVAD). The numerical model consisted of a cardiovascular lumped parameter (CLP) model, a baroreflex model, and an LVAD model. The CLP model was established to simulate the human cardiovascular system including the left heart, right heart, systemic circulation, and pulmonary circulation. The baroreflex model was used to regulate left and right ventricular end-systolic elastances, systemic vascular resistance, and heart rate. The centrifugal pump HeartMate Ⅲ used as an example to simulate the rotary pump dynamics at different operating speeds. Simulation results show that hemodynamics under normal, left ventricular failure and different levels of pump support conditions can be reproduced by the numerical model. Based on simulation results, HeartMate Ⅲ operating speed can be maintained between 3600 rpm and 4400 rpm to avoid pump regurgitation and ventricular suction. Additionally, in the simulation system, the HeartMate Ⅲ operating speed should be between 3600 rpm and 3800 rpm to provide optimal physiological perfusion. Thus, the developed numerical model is a feasible solution to simulate hemodynamics and evaluate the operating condition of continuous-flow LVAD.


    加载中


    [1] E. Lim, S. Dokos, S. L. Cloherty, R. F. Salamonsen, D. G. Mason, J. A. Reizes, et al., Parameter-Optimized Model of Cardiovascular-Rotary Blood Pump Interactions, Ieee Trans. Biomed. Eng., 57 (2010), 254-266. doi: 10.1109/TBME.2009.2031629
    [2] A. S. Karavaev, Y. M. Ishbulatov, V. I. Ponomarenko, M. D. Prokhorov, V. I. Gridnev, B. P. Bezruchko, et al., Model of human cardiovascular system with a loop of autonomic regulation of the mean arterial pressure, J. Am. Soc. Hypertens., 10 (2016), 235-243. doi: 10.1016/j.jash.2015.12.014
    [3] S. Kosta, J. Negroni, E. Lascano, P. C. Dauby, Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices, Math. Biosci., 284 (2017), 71-79. doi: 10.1016/j.mbs.2016.05.007
    [4] Y. B. Shi, T. Korakianitis, Impeller-pump model derived from conservation laws applied to the simulation of the cardiovascular system coupled to heart-assist pumps, Comput. Biol. Med., 93 (2018), 127-138. doi: 10.1016/j.compbiomed.2017.12.012
    [5] R. S. Figliola, A. Giardini, T. Conover, T. A. Camp, G. Biglino, J. Chiulli, et al., In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects, Prog. Pediatr. Cardiol, 30 (2010), 71-80. doi: 10.1016/j.ppedcard.2010.09.009
    [6] S. Ribaric, M. Kordas, Simulation of the Frank-Starling Law of the Heart, Comput. Math. Methods Med., 2012 (2012), 1-12.
    [7] M. A. Simaan, A. Ferreira, S. H. Chen, J. F. Antaki, D. G. Galati, A Dynamical State Space Representation and Performance Analysis of a Feedback-Controlled Rotary Left Ventricular Assist Device, Ieee Trans. Control Syst. Technol., 17 (2009), 15-28. doi: 10.1109/TCST.2008.912123
    [8] L. M. Itu, P. Sharma, C. Suciu, Patient-specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular Pathologies, Springer International publishing, 2017.
    [9] K. Gu, Y. Chang, B. Gao, Y. Liu, Z. Zhang, F. Wan, Lumped parameter model for heart failure with novel regulating mechanisms of peripheral resistance and vascular compliance, ASAIO J., 58 (2012), 223-231. doi: 10.1097/MAT.0b013e31824ab695
    [10] M. Abdi, A. Karimi, M. Navidbakhsh, G. P. Jahromi, K. Hassani, A lumped parameter mathematical model to analyze the effects of tachycardia and bradycardia on the cardiovascular system, Int. J. Numer. Model. EL, 28 (2015), 346-357. doi: 10.1002/jnm.2010
    [11] D. S. Petukhov, D. V. Telyshev, A Mathematical Model of the Cardiovascular System of Pediatric Patients with Congenital Heart Defect, Biomed. Eng., 50 (2016), 229-232. doi: 10.1007/s10527-016-9626-y
    [12] S. Pant, C. Corsini, C. Baker, T. Y. Hsia, G. Pennati, I. E. Vignon-Clementel, A Lumped Parameter Model to Study Atrioventricular Valve Regurgitation in Stage 1 and Changes Across Stage 2 Surgery in Single Ventricle Patients, IEEE Trans. Biomed. Eng., 65 (2018), 2450-2458. doi: 10.1109/TBME.2018.2797999
    [13] T. G. Myers, V. R. Ripoll, A. S. de Tejada Cuenca, S. L. Mitchell, M. J. McGuinness, Modelling the cardiovascular system for assessing the blood pressure curve, Math. Ind. Case Stud., 8 (2017), 1-16.
    [14] Y. B. Shi, T. Korakianitis, Numerical simulation of cardiovascular dynamics with left heart failure and in-series pulsatile ventricular assist device, Artif. Organs, 30 (2006), 929-948. doi: 10.1111/j.1525-1594.2006.00326.x
    [15] M. Capoccia, S. Marconi, S. A. Singh, D. M. Pisanelli, C. De Lazzari, Simulation as a preoperative planning approach in advanced heart failure patients. A retrospective clinical analysis, Biomed. Eng. Online, 17 (2018).
    [16] C. De Lazzari, M. Darowski, G. Ferrari, D. M. Pisanelli, G. Tosti, The impact of rotary blood pump in conjunction with mechanical ventilation on ventricular energetic parameters - Numerical simulation, Methods Inf. Med., 45 (2006), 574-583. doi: 10.1055/s-0038-1634120
    [17] C. De Lazzari, I. Genuini, B. Quatember, F. Fedele, Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: In silico study, Comput. Methods Programs Biomed., 113 (2014), 642-654. doi: 10.1016/j.cmpb.2013.11.011
    [18] CARDIOSIM© Cardiovascular Software Simulator developed at the Institute of Clinical Physiology.(2018), https://cardiosim.dsb.cnr.it/.2018.
    [19] C. De Lazzari, I. Genuini, D. M. Pisanelli, A. D'Ambrosi, F. Fedele, Interactive simulator for e-Learning environments: a teaching software for health care professionals, Biomed. Eng. Online, 13 (2014).
    [20] A. Di Molfetta, A. Amodeo, M. G. Gagliardi, M. G. Trivella, L. Fresiello, S. Filippelli, et al., Hemodynamic Effects of Ventricular Assist Device Implantation on Norwood, Glenn, and Fontan Circulation: A Simulation Study, Artif. Organs, 40 (2016), 34-42. doi: 10.1111/aor.12591
    [21] A. Di Molfetta, G. Ferrari, R. Iacobelli, S. Filippelli, A. Amodeo, Concurrent Use of Continuous and Pulsatile Flow Ventricular Assist Device on a Fontan Patient: A Simulation Study, Artif. Organs, 41 (2017), 32-39. doi: 10.1111/aor.12859
    [22] A. Di Molfetta, G. Ferrari, R. Iacobelli, S. Filippelli, L. Fresiello, P. Guccione, et al., Application of a Lumped Parameter Model to Study the Feasibility of Simultaneous Implantation of a Continuous Flow Ventricular Assist Device (VAD) and a Pulsatile Flow VAD in BIVAD Patients, Artif. Organs, 41 (2017), 242-252. doi: 10.1111/aor.12911
    [23] J. T. Ottesen, M. S. Olufsen, J. K. Larsen, Applied Numerical models in Human Physiology. Denmark, Roskilde: Roskilde University. 2003.
    [24] M. Ursino, Interaction between carotid baroregulation and the pulsating heart: a mathematical model, Am. J. Physiol.-Heart Circ. Physiol., 275 (1998), H1733-H1747. doi: 10.1152/ajpheart.1998.275.5.H1733
    [25] J. T. Ottesen, Modelling the dynamical baroreflex-feedback control, Math. Comput. Model., 31 (2000), 167-173.
    [26] S. Bozkurt, Effect of Cerebral Flow Autoregulation Function on Cerebral Flow Rate Under Continuous Flow Left Ventricular Assist Device Support, Artif. Organs, 42 (2018), 800-813. doi: 10.1111/aor.13148
    [27] S. Bozkurt, K. K. Safak, Evaluating the Hemodynamical Response of a Cardiovascular System under Support of a Continuous Flow Left Ventricular Assist Device via Numerical Modeling and Simulations, Comput. Math. Methods Med., 2013 (2013).
    [28] L. G. E. Cox, S. Loerakker, M. C. M. Rutten, B. A. J. M. de Mol, F. N. van de Vosse, A Mathematical Model to Evaluate Control Strategies for Mechanical Circulatory Support, Artif. Organs, 33 (2009), 593-603.
    [29] L. Fresiello, F. Rademakers, P. Claus, G. Ferrari, A. Di Molfetta, B. Meyns, Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator, Plos One, 12 (2017).
    [30] C. Gross, F. Moscato, T. Schloglhofer, LVAD speed increase during exercise, which patients would benefit the most? A simulation study, Artif. Organs, 44 (2019), 239-247.
    [31] S. Bozkurt, F. N. van de Vosse, M. C. M. Rutten, Improving arterial pulsatility by feedback control of a continuous flow left ventricular assist device via in silico modeling, Int. J. Artif. Organs, 37 (2014), 773-785. doi: 10.5301/ijao.5000328
    [32] K. M. Lim, I. S. Kim, S. W. Choi, B. G. Min, Y. S. Won, H. Y. Kim, et al., Computational analysis of the effect of the type of LVAD flow on coronary perfusion and ventricular afterload, J. Physiol. Sci., 59 (2009), 307-316. doi: 10.1007/s12576-009-0037-7
    [33] H. Suga, K. Sagawa, Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle, Circ. Res., 35 (1974), 117-126. doi: 10.1161/01.RES.35.1.117
    [34] I. Kokalari, Review on lumped parameter method for modeling the blood flow in systemic arteries, J. Biomed. Sci. Eng., 06 (2013), 92-99. doi: 10.4236/jbise.2013.61012
    [35] S. Choi, Modeling and control of left ventricular assist system[Ph. D. Dissertation]. Pittsburgh: University of Pittsburgh. 1998.
    [36] S. M. Sopher, M. L. Smith, D. L. Eckberg, J. M. Fritsch, M. E. Dibnerdunlap, Autonomic Pathophysiology in Heart-Failure-Carotid Baroreceptor-Cardiac Reflexes, Am. J. Physiol., 259 (1990), H689-H696.
    [37] P. B. Persson, Modulation of cardiovascular control mechanisms and their interaction, Physiol. Rev., 76 (1996), 193-244. doi: 10.1152/physrev.1996.76.1.193
    [38] J. E. Hall, M. E. Hall, Guyton and Hall Textbook of Medical Physiology. Philadelphia, PA: Elsevier Inc. 2011.
    [39] A. C. Guyton, Textbook of Medical Physiology. Philadelphia, W.B: Elsevier Inc. 1986.
    [40] K. M. Swetz, M. R. Freeman, P. S. Mueller, S. J. Park, Clinical management of continuous-flow left ventricular assist devices in advanced heart failure, J. Heart Lung Transplant., 29 (2010), S1-S38. doi: 10.1016/j.healun.2010.01.011
    [41] S. Undar, O. T. H. Frazier, C. D. Fraser, Defining pulsatile perfusion: Quantification in terms of energy equivalent pressure, Artif. Organs, 23 (1999), 712-716. doi: 10.1046/j.1525-1594.1999.06409.x
    [42] T. Pirbodaghi, S. Axiak, A. Weber, T. Gempp, S. Vandenberghe, Pulsatile control of rotary blood pumps: Does the modulation waveform matter?, J. Thorac. Cardiovasc. Surg., 144 (2012), 970-977. doi: 10.1016/j.jtcvs.2012.02.015
    [43] F. Castagna, E. J. Stohr, A. Pinsino, J. R. Cockcroft, J. Willey, A. R. Garan, et al., The Unique Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and Future Opportunities, Curr. Hypertens. Rep., 19 (2017).
    [44] D. Ambrosi, A. Quarteroni, G. Rozza, Modeling of physiological flows: Springer Science & Business Media. 2012.
    [45] T. Koeppl, G. Santin, B. Haasdonk, R. Helmig, Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods, Int. J. Numer. Methods Biomed. Eng., 34 (2018), 1-24.
    [46] F. Y. Liang, S. Takagi, R. Himeno, H. Liu, Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses, Medi. Biol. Eng. Comput., 47 (2009), 743-755. doi: 10.1007/s11517-009-0449-9
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5239) PDF downloads(394) Cited by(10)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog