Citation: Peng Wu, Baosheng Liang, Yifan Xia, Xingwei Tong. Predicting disease risks by matching quantiles estimation for censored data[J]. Mathematical Biosciences and Engineering, 2020, 17(5): 4544-4562. doi: 10.3934/mbe.2020251
[1] | J. Buckley, I. James, Linear regression with censored data, Biometrika, 66 (1979), 429-436. |
[2] | L. J. Wei, The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis, Stat. Med., 11 (1992), 1871-1879. |
[3] | S. C. Cheng, L. J. Wei, Z. Ying, Analysis of transformation models with censored data, Biometrika, 82 (1995), 835-845. |
[4] | Z. Jin, D. Y. Lin, L. J. Wei, Z. Ying, Rank based inference for the accelerated failure time model, Biometrika, 90 (2003), 341-353. |
[5] | D.R. Cox, Regression models and life-tables (with discussion), J. R. Stat. Soc., 34 (1972), 187-220. |
[6] | D. Y. Lin, Z. Ying, Semiparametric analysis of the additive risk model, Biometrika, 81 (1994), 61-71. |
[7] | D. Zeng, D. Lin, Maximum likelihood estimation in semiparametric regression models with censored data, J. R. Stat. Soc., 69 (2007), 507-564. |
[8] | S. Portnoy, Censored regression quantiles, J. Am. Stat. Assoc., 98 (2003), 1001-1012. |
[9] | R. Koenker, Censored quantile regression redux, J. Stat. Software, 27 (2008), 1-25. |
[10] | H. J. Wang, L. Wang, Locally weighted censored quantile regression, J. Am. Stat. Assoc., 104 (2009), 1117-1128. |
[11] | R. Henderson, N. Keiding, Individual survival time prediction using statistical models, J. of Med. Ethics, 31 (2005), 703-706. |
[12] | Z. Karian, E. Dudewicz, Fitting the generalized Lambda distribution to data: A method based on percentiles, Commun. Stat. Simul. Comput., 28 (1999), 793-819. |
[13] | Y. Dominicy, D. Veredas, The method of simulated quantiles, J. Econometrics, 172 (2013), 235-247. |
[14] | N. Sgouropoulos, Q. Yao, C. Yastremiz, Matching a distribution by matching quantiles estimation, J. Am. Stat. Assoc., 110 (2015), 742-759. |
[15] | R. Koenker, K. F. Hallock, Quantile Regression, J. Econ. Perspect. 15 (2001), 143-156. |
[16] | H. Zou, M. Yuan, Composite quantile regression and the oracle model selection theory, Ann. Stat., 36 (2008), 1108-1126. |
[17] | A. K. Han, Non-parametric analysis of a generalized regression model: The maximum rank correlation estimator J. Econometrics, 35 (1987), 303-316. |
[18] | R. P. Sherman, The limiting distribution of the maximum rank correlation estimator, Econometrica, 61 (1993), 123-137. |
[19] | S. Khan, E. Tamer, Partial rank estimation of duration models with general forms of censoring, J. Econometrics, 136 (2007), 251-280. |
[20] | B. Efron, The two sample problem with censored data, In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1967, 831-853. Available from: http://www.med.mcgill.ca/epidemiology/hanley/bios601/SurvivalAnalysis/Efron1967.pdf. |
[21] | D. M. Dabrowska, Uniform consistency of the kernel conditional Kaplan-Meier estimate, Ann. Stat., 17 (1989), 1157-1167. |
[22] | J. Kiefer, Deviations between the sample quantile process and the sample df, Nonparametric Tech. Stat. Inference, 1970 (1970), 299-319. |
[23] | B. M. Brown, Y. G. Wang, Induced smoothing for rank regression with censored survival times, Stat. Med., 26 (2007), 828-836. |
[24] | Z. Jin, D. Y. Lin, Z. Ying, On least-squares regression with censored data, Biometrika, 93 (2006), 147-161. |
[25] | J. D. Kalbfleisch, R. L. Prentice, The Statistical Analysis of Failure Time Data, John Wiley & Sons, New York, 2011. |
[26] | W. Gonzalez-Manteiga, C. Cadarso-Suarez, Asymptotic properties of a generalized Kaplan-Meier estimator with some applications, J. Nonparametric Stat., 4 (1994), 65-78. |
[27] | C. L. Leng, X. W. Tong, Censored quantile regression via Box-Cox transformation under conditional independence, Stat. Sinica, 24 (2014), 221-249. |