Research article

Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies

  • Received: 22 July 2019 Accepted: 05 November 2019 Published: 17 December 2019
  • Kidney tubules are lined with flow-sensing structures, yet information about the flow itself is not easily obtained. We aim to generate a multiscale biomechanical model for analyzing fluid flow and fluid-structure interactions within an elastic kidney tubule when the driving pressure is pulsatile. We developed a two-dimensional macroscopic mathematical model of a single fluid-filled tubule corresponding to a distal nephron segment and determined both flow dynamics and wall strains over a range of driving frequencies and wall compliances using finite-element analysis. The results presented here demonstrate good agreement with available analytical solutions and form a foundation for future inclusion of elastohydrodynamic coupling by neighboring tubules. Overall, we are interested in exploring the idea of dynamic pathology to better understand the progression of chronic kidney diseases such as Polycystic Kidney Disease.

    Citation: Niksa Praljak, Shawn D. Ryan, Andrew Resnick. Pulsatile flow through idealized renal tubules: Fluid-structure interaction and dynamic pathologies[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1787-1807. doi: 10.3934/mbe.2020094

    Related Papers:

  • Kidney tubules are lined with flow-sensing structures, yet information about the flow itself is not easily obtained. We aim to generate a multiscale biomechanical model for analyzing fluid flow and fluid-structure interactions within an elastic kidney tubule when the driving pressure is pulsatile. We developed a two-dimensional macroscopic mathematical model of a single fluid-filled tubule corresponding to a distal nephron segment and determined both flow dynamics and wall strains over a range of driving frequencies and wall compliances using finite-element analysis. The results presented here demonstrate good agreement with available analytical solutions and form a foundation for future inclusion of elastohydrodynamic coupling by neighboring tubules. Overall, we are interested in exploring the idea of dynamic pathology to better understand the progression of chronic kidney diseases such as Polycystic Kidney Disease.


    加载中


    [1] I. Mnassri, A. El Baroudi, Vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid, Acta Mech. Solida Sin., 30 (2017), 435-444.
    [2] R. M. Terrill, An exact solution for flow in a porous pipe, Z. Angew. Math. Phys., 33 (1982), 547-552.
    [3] O. San, A. E. Staples, Dynamics of pulsatile flows through elastic microtubes, Int. J. Appl. Mech., 4 (2012).
    [4] S. Nag, A. Resnick, Biophysics and biofluid dynamics of primary cilia: Evidence for and against the flow-sensing function, Am. J. Physiol. Renal Physiol., 313 (2017), 706-720.
    [5] M. J. Lighthill, Mathematical Biofluiddynamics, Society for Industrial and Applied Mathematics, Philadelphia, 1975.
    [6] A. El Baroudi, F. Razafimahery, L. Rakotomanana, Fluid-structure interaction within three-dimensional models of an idealized arterial wall, Int. J. Eng. Sci., 84 (2014), 113-126.
    [7] M. Zamir, The Physics of Pulsatile Flow, Springer-Verlag, New York, 2000.
    [8] P. D. Cabral, J. L. Garvin, Luminal flow regulates no and o2(-) along the nephron, Am. J. Physiol. Renal Physiol., 300 (2011), 1047-1053.
    [9] L. M. Satlin, S. Sheng, C. B. Woda, T. R. Kleyman, Epithelial Na(+) channels are regulated by flow, Am. J. Physiol. Renal Physiol., 280 (2001), 1010-1018.
    [10] M. Essig, G. Friedlander, Tubular shear stress and phenotype of renal proximal tubular cells, J. Am. Soc. Nephrol, 14 (2003), S33-35.
    [11] J. B. Freund, J. G. Goetz, K. L. Hill, J. Vermot, Fluid flows and forces in development: Functions, features and biophysical principles, Development, 139 (2012), 1229-1245.
    [12] F. Kotsis, R. Nitschke, M. Doerken, G. WalzE, W, Kuehn, Flow modulates centriole movements in tubular epithelial cells, Pflugers Arch, 456 (2008), 1025-1035.
    [13] A. B. Maunsbach, G. H. Giebisch, B. A. Stanton, Effects of flow rate on proximal tubule ultrastructure, Am. J. Physiol., 253 (1987), 582-587.
    [14] H. A. Praetorius, K. R. Spring, Removal of the mdck cell primary cilium abolishes flow sensing, J. Membr. Biol., 191 (2002), 69-76.
    [15] H. A. Praetorius, K. R. Spring, The renal cell primary cilium functions as a flow sensor, Curr. Opin. Nephrol Hypertens, 12 (2003), 517-520.
    [16] D. J. Furley, J. S. Wilkie, Galen on Respiration and the Arteries: an Edition with English Translation and Commentary of De usu Respirationis, An in Arteriis Natura Sanguis Contineatur, De usu Pulsum, and De Causis Respirationis, Princeton University Press, Guildford, 1984.
    [17] W. Harvey, On the Motion of the Heart and Blood in Animals; and on the Circulation of the Blood; and on the Generation of Animals, William Benton, Chicago, 1952.
    [18] J. R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol., 127 (1955), 553-563.
    [19] J. R. Womersley, Xxiv. oscillatory motion of a viscous liquid in a thin-walled elastic tubei: The linear approximation for long waves, London, Edinburgh, Dublin Philos. Mag. J. Sci., 46 (1955), 199-221.
    [20] J. Womersley, An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries, 1957.
    [21] R. I. Macey, Pressure flow patterns in a cylinder with reabsorbing walls, Bull. Math. Biophy., 25 (1963), 1-9.
    [22] E. A. Marshall, E. A. Trowbridge, Flow of a newtonian fluid through a permeable tube - application to proximal renal tubule, Bull. Math. Bio., 36 (1974), 457-476.
    [23] C. Pozrikidis, Stokes flow through a permeable tube, Arch. Appl. Mech., 80 (2010), 323-333.
    [24] A. M. Weinstein, Nonequilibrium thermodynamic model of the rat proximal tubule epithelium, Biophys. J., 44 (1983), 153-70.
    [25] A. M. Weinstein, A mathematical model of the rat proximal tubule, Am. J. Physiol., 250 (1986), 860-873.
    [26] A. M. Weinstein, A mathematical model of rat ascending henle limb. i. cotransporter function, Am. J. Physiol. Renal Physiol., 298 (2010), 512-524.
    [27] A. M. Weinstein, A mathematical model of rat ascending henle limb. iii. tubular function, Am. J. Physiol. Renal Physiol., 298 (2010), 543-556.
    [28] A. M. Weinstein, T. A. Krahn, A mathematical model of rat ascending henle limb. ii. epithelial function, Am. J. Physiol. Renal Physiol., 298 (2010), 525-542.
    [29] A. M. Weinstein, A mathematical model of rat collecting duct. i. flow effects on transport and urinary acidification, Am. J. Physiol. Renal Physiol., 283 (2002), 1237-1251.
    [30] M. E. Downs, A. M. Nguyen, F. A. Herzog, D. A. Hoey, C. R. Jacobs, An experimental and computational analysis of primary cilia deflection under fluid flow, Comput. Methods Biomech. Biomed. Eng., 17 (2014), 2-10.
    [31] W. Liu, S. Xu, C. Woda, P. Kim, S. Weinbaum, L. M. Satlin, Effect of flow and stretch on the [Ca2+] i response of principal and intercalated cells in cortical collecting duct, Am. J. Physiol. Renal Physiol., 285 (2003), 998-1012.
    [32] A. K. O'Connor, E. B. Malarkey, N. F. Berbari, M. J. Croyle, C. J. Haycraft, P. D. Bell, et al., An inducible ciliagfp mouse model for in vivo visualization and analysis of cilia in live tissue, Cilia, 2 (2013), 8.
    [33] A. T. Layton, L. C. Moore, H. E. Layton, Signal transduction in a compliant thick ascending limb, Am. J. Physiol. Renal Physiol., 302 (2012), 1188-1202.
    [34] D. J. Marsh, O. V. Sosnovtseva, E. Mosekilde, N. H. Holstein-Rathlou, Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree, Chaos, 17 (2007), 015114.
    [35] A. T. Layton, H. E. Layton, A computational model of epithelial solute and water transport along a human nephron, PLoS Comput. Biol., 15 (2019), e1006108.
    [36] COMSOL Multiphysics® v. 5.4. www.comsol.com. COMSOL AB, Stockholm, Sweden.
    [37] M. Dejam, Dispersion in non-newtonian fluid flows in a conduit with porous walls, Chem. Eng. Sci., 189 (2018), 296-310.
    [38] M. Dejam, H. Hassanzadeh, Z. X. Chen, Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls, Chem. Eng. Sci., 137 (2015), 205-215.
    [39] M. Zamir, Hemo-Dynamics, Springer International Publishing, 2015.
    [40] A. T. Layton, Modeling transport and flow regulatory mechanisms of the kidney, ISRN Biomath., 2012 (2012).
    [41] A. T. Layton, L. C. Moore, H. E. Layton, Multistable dynamics mediated by tubuloglomerular feedback in a model of coupled nephrons, Bull. Math. Bio., 71 (2009).
    [42] H. B. Atabek, Wave propagation through a viscous fluid contained in a tethered, initially stresses, orthotropic elastic tube, Biophys. J., 8 (1968), 626-649.
    [43] M. A. Day, The no-slip condition of fluid dynamics, Erkenntnis, 33 (1990), 285-296.
    [44] B. J. Cox, J. M. Hill, Flow through a circular tube with a permeable navier slip boundary, Nanoscale Res. Lett., 6 (2011), 389.
    [45] L. N. Reinking, B. Schmidt-Nielsen, Peristaltic flow of urine in the renal capillary collecting ducts of hamsters, Kidney Int., 20 (1981), 55-60.
    [46] M. Pradella, R. M. Dorizzi, F. Rigolin, Relative density of urine: Methods and clinical significance, Crit. Rev. Clin. Lab. Sci., 26 (1988), 195-242.
    [47] B. Vahidi, N. Fatouraee, A. Imanparast, A. N. Moghadam, A mathematical simulation of the ureter: Effects of the model parameters on ureteral pressure/flow relations, J. Biomech. Eng., 133 (2011), 031004.
    [48] S. Cortell, F. J. Gennari, M. Davidman, W. H. Bossert, W. B. Schwartz, A definition of proximal and distal tubular compliance. Practical and theoretical implications, J. Clin. Invest., 52 (1973), 2330-2339.
    [49] N. H. Holstein-Rathlou, D. J. Marsh, Oscillations of tubular pressure, flow, and distal chloride concentration in rats, Am. J. Physiol., 256 (1989), 1007-1014.
    [50] E. Gonzalez, P. Carpi-Medina, G. Whittembury, Cell osmotic water permeability of isolated rabbit proximal straight tubules, Am. J. Physiol., 242 (1982), 321-330.
    [51] E. Frömter, C. Mller, T. Wick, Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods, Electrophysiol. Epithelial Cells, (1971), 119-146.
    [52] J. A. Schafer, Transepithelial osmolality differences, hydraulic conductivities, and volume absorption in the proximal tubule, Annu. Rev. Physiol., 52 (1990), 709-726.
    [53] J. Howard, Mechanics of Motor Proteins and the Cytoskeleton, Sinauer, 2001.
    [54] T. Sakai, D. A. Craig, A. S. Wexler, D. J. Marsh, Fluid waves in renal tubules, Biophys. J., 50 (1986), 805-813.
    [55] M. Mahran, A. ELsabbagh, H. Negm, A comparison between different finite elements for elastic and aero-elastic analyses, J. Adv. Res., 8 (2017), 635-648.
    [56] R. Carrisoza-Gaytan, Y. Liu, D. Flores, C. Else, H. G. Lee, G. Rhodes, et al., Effects of biomechanical forces on signaling in the cortical collecting duct (ccd), Am. J. Physiol. Renal Physiol., 307 (2014), 195-204.
    [57] J. J. Kang, I. Toma, A. Sipos, F. McCulloch, J. Peti-Peterdi, Quantitative imaging of basic functions in renal (patho) physiology, Am. J. Physiol. Renal Physiol., 291 (2006), 495-502.
    [58] A. T. Layton, L. C. Moore, H. E. Layton, Multistability in tubuloglomerular feedback and spectral complexity in spontaneously hypertensive rats, Am. J. Physiol. Renal Physiol., 291 (2006) 79-97.
    [59] E. B. Pitman, R. M. Zaritski, K. J. Kesseler, L. C. Moore, H. E. Layton, Feedback-mediated dynamics in two coupled nephrons, Bul. Math. Bio., 66 (2004), 1463-1492.
    [60] J. L. Laugesen, E. Mosekilde, N.-H. Holstein-Rathlou, Synchronization of period-doubling oscillations in vascular coupled nephrons, Chaos: Interdiscip. J. Nonlinear Sci., 21 (2011), 033128.
    [61] D. J. Marsh, O. V. Sosnovtseva, E. Mosekilde, N. H. Holstein-Rathlou, Vascular coupling induces synchronization, quasiperiodicity, and chaos in a nephron tree, Chaos: Interdiscip. J. Nonlinear Sci., 17 (2007), 015114.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4982) PDF downloads(500) Cited by(3)

Article outline

Figures and Tables

Figures(11)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog