Citation: David Cuesta–Frau. Permutation entropy: Influence of amplitude information on time series classification performance[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6842-6857. doi: 10.3934/mbe.2019342
[1] | R. Alcaraz, D. Abásolo, R. Hornero, et al., Study of Sample Entropy ideal computational pa-rameters in the estimation of atrial fibrillation organization from the ECG, in 2010 Computing in Cardiology, 2010, 1027–1030. |
[2] | R. G. Andrzejak, K. Lehnertz, F. Mormann, et al., Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state, Phys. Rev. E, 64 (2001), 061907. |
[3] | K. N. Aronis, R. D. Berger, H. Calkins, et al., Is human atrial fibrillation stochastic or determinis-tic? Insights from missing ordinal patterns and causal entropy–complexity plane analysis, Chaos, 28 (2018), 063130. |
[4] | H. Azami and J. Escudero, Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation, Comput. Meth. Prog. Bio., 128 (2016), 40–51. |
[5] | A. Bagnall, J. Lines, A. Bostrom, et al., The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances, Data Min. Knowl. Disc., 31 (2017), 606–660. |
[6] | C. Bandt and B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett., 88 (2002), 174102. |
[7] | C. Bian, C. Qin, Q. D. Y. Ma, et al., Modified Permutation-entropy analysis of heartbeat dynamics, Phys. Rev. E, 85 (2012), 021906. |
[8] | A. E. X. Brown, E. I. Yemini, L. J. Grundy, et al., A dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotion, Proceed. Nat. Aca. Sci., 110 (2013), 791–796. |
[9] | C. Carricarte-Naranjo, D. J. Cornforth, L. M. Sánchez-Rodríguez, et al., Rényi and permutation entropy analysis for assessment of cardiac autonomic neuropathy, in EMBEC & NBC 2017 (eds. H. Eskola, O. Väisänen, J. Viik and J. Hyttinen), Springer Singapore, Singapore, 2018, 755–758. |
[10] | E. Cirugeda-Roldán, D. Cuesta-Frau, P. Miró-Martínez, et al., A new algorithm for quadratic sample entropy optimization for very short biomedical signals: Application to blood pressure records, Comput. Meth. Prog. Bio., 114 (2014), 231–239. |
[11] | E. Cirugeda-Roldán, D. Novák, V. Kremen, et al., Characterization of complex fractionated atrial electrograms by Sample Entropy: An international multi–center study, Entropy, 17 (2015), 7493–7509. |
[12] | D. Cuesta-Frau, P. Miró-Martínez, S. Oltra-Crespo, et al., Classification of glucose records from patients at diabetes risk using a combined permutation entropy algorithm, Comput. Meth. Prog. Bio., 165 (2018), 197–204. |
[13] | D. Cuesta-Frau, P. Miró-Martínez, S. Oltra-Crespo, et al., Model selection for body temperature signal classification using both amplitude and ordinality-based entropy measures, Entropy, 20. |
[14] | D. Cuesta-Frau, D. Novák, V. Burda, et al., Characterization of artifact influence on the classifi-cation of glucose time series using sample entropy statistics, Entropy, 20. |
[15] | D. Cuesta-Frau, M. Varela-Entrecanales, A. Molina-Picó, et al., Patterns with equal values in permutation entropy: Do they really matter for biosignal classification?, Complexity, 2018 (2018), 1–15. |
[16] | B. Deng, L. Cai, S. Li, et al., Multivariate multi-scale weighted Permutation Entropy analysis of EEG complexity for Alzheimer's disease, Cogn. Neurodynamics, 11 (2017), 217–231. |
[17] | B. Fadlallah, B. Chen, A. Keil, et al., Weighted-permutation entropy: A complexity measure for time series incorporating amplitude information, Phys. Rev. E, 87 (2013), 022911. |
[18] | Y. Gao, F. Villecco, M. Li, et al., Multi-scale permutation entropy based on improved LMD and HMM for rolling bearing diagnosis, Entropy, 19. |
[19] | J. Garland, T. R. Jones, M. Neuder, et al., Anomaly detection in paleoclimate records using permutation entropy, Entropy, 20. |
[20] | A. L. Goldberger, L. A. N. Amaral, L. Glass, et al., PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101 (2000), 215–220. |
[21] | M. Henry and G. Judge, Permutation entropy and information recovery in nonlinear dynamic economic time series, Econometrics, 7. |
[22] | N. Iyengar, C. K. Peng, R. Morin, et al., Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics, Am. J. Physiol. Integrat. Comparat. Physiol., 271 (1996), R1078–R1084, PMID: 8898003. |
[23] | D. E. Lake, J. S. Richman, M. P. Griffin, et al., Sample entropy analysis of neonatal heart rate variability, Am. J. Physiol. Integrat. Comparat. Physiol., 283 (2002), R789–R797. |
[24] | H. Li, C. Peng and D. Ye, A study of sleep staging based on a sample entropy analysis of electroencephalogram, Bio-Med. Mater. Eng., 26 (2015), S1149–S1156. |
[25] | G. B. Moody, A. L. Goldberger, S. McClennenm, et al., Predicting the onset of Paroxysmal Atrial Fibrillation: The Computers in Cardiology Challenge 2001, Comput. Cardiol., 28 (2011), 113–116. |
[26] | D. Murray, J. Liao, L. Stankovic, et al., A data management platform for personalised real-time energy feedback, in Procededings of the 8th International Conference on Energy Efficiency in Domestic Appliances and Lighting, 2015. |
[27] | N. Nicolaou and J. Georgiou, The use of permutation entropy to characterize sleep electroen-cephalograms, Clin. EEG Neurosci., 42 (2011), 24–28, PMID: 21309439. |
[28] | E. Olofsen, J. Sleigh and A. Dahan, Permutation entropy of the electroencephalogram: A measure of anaesthetic drug effect, Br. J. Anaesth., 101 (2008), 810–821. |
[29] | A. G. Ravelo-García, J. L. Navarro-Mesa, Casanova-Blancas, et al., Application of the permuta-tion entropy over the heart rate variability for the improvement of electrocardiogram-based sleep breathing pause detection, Entropy, 17 (2015), 914–927. |
[30] | J. S. Richman, Sample entropy statistics and testing for order in complex physiological signals, Commun. Stat. Theor. M., 36 (2007), 1005–1019. |
[31] | M. O. Sokunbi, Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets, Front. Neuroinform., 8 (2014), 69. |
[32] | X. Wang, S. Si, Y. Wei, et al., The optimized multi-scale permutation entropy and its application in compound fault diagnosis of rotating machinery, Entropy, 21. |
[33] | Y. Xia, L. Yang, L. Zunino, et al., Application of permutation entropy and permutation min-entropy in multiple emotional states analysis of RRI time series, Entropy, 20 (2018), 148. |
[34] | X. F. Liu and Y. Wang, Fine-grained permutation entropy as a measure of natural complexity for time series, Chinese Phys. B, 18 (2009), 2690. |
[35] | Y. Yang, M. Zhou, Y. Niu, et al., Epileptic seizure prediction based on permutation entropy, in Front. Comput. Neurosci., 2018. |
[36] | E. Yemini, T. Jucikas, L. J. Grundy, et al., A database of caenorhabditis elegans behavioral phenotypes, Nat. Meth., 10 (2013), 877–879. |
[37] | M. Zanin, D. Gómez-Andrés, I. Pulido-Valdeolivas, et al., Characterizing normal and pathological gait through permutation entropy, Entropy, 20. |
[38] | M. Zanin, L. Zunino, O. A. Rosso, et al., Permutation entropy and its main biomedical and econophysics applications: A review, Entropy, 14 (2012), 1553–1577. |
[39] | Y. Zhang and P. Shang, Permutation entropy analysis of financial time series based on hills diversity number, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 288–298. |
[40] | L. Zunino and C. W. Kulp, Detecting nonlinearity in short and noisy time series using the permu-tation entropy, Phys. Lett. A, 381 (2017), 3627–3635. |
[41] | L. Zunino, F. Olivares, F. Scholkmann, et al., Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions, Phys. Lett. A, 381 (2017), 1883–1892. |
[42] | L. Zunino, M. Zanin, B. M. Tabak, et al., Forbidden patterns, permutation entropy and stock market inefficiency, Physica A, 388 (2009), 2854–2864. |