Research article Special Issues

Dynamical analysis of a fractional-order Cournot–Bertrand duopoly model with time delays

  • Published: 04 August 2025
  • MSC : 34C23, 91A22

  • This paper investigates a fractional-order Cournot–Bertrand duopoly model with time delays. Employing stability theory for fractional-order delayed dynamical systems and Hopf bifurcation (HB) analysis, we rigorously derive stability criteria for equilibrium points and HB thresholds across six distinct scenarios. Theoretical and numerical results demonstrate that both fractional order and delay length significantly influence the model's dynamical properties. Enterprises should account for memory effects and decision delays in market information to construct monitoring mechanisms, while regulators must track corporate decision-making strategies and market dynamics to establish early-warning systems. Such systems can prevent market imbalance risks through real-time monitoring of key parameters.

    Citation: Nengfa Wang, Kai Gu, Zixin Liu, Changjin Xu. Dynamical analysis of a fractional-order Cournot–Bertrand duopoly model with time delays[J]. AIMS Mathematics, 2025, 10(8): 17567-17601. doi: 10.3934/math.2025785

    Related Papers:

  • This paper investigates a fractional-order Cournot–Bertrand duopoly model with time delays. Employing stability theory for fractional-order delayed dynamical systems and Hopf bifurcation (HB) analysis, we rigorously derive stability criteria for equilibrium points and HB thresholds across six distinct scenarios. Theoretical and numerical results demonstrate that both fractional order and delay length significantly influence the model's dynamical properties. Enterprises should account for memory effects and decision delays in market information to construct monitoring mechanisms, while regulators must track corporate decision-making strategies and market dynamics to establish early-warning systems. Such systems can prevent market imbalance risks through real-time monitoring of key parameters.



    加载中


    [1] S. Bylka, J. Komar, Cournot–Bertrand mixed oligopolies, In: Warsaw fall seminars in mathematical economics 1975, Berlin, Heidelberg: Springer, 1975, 22–33. https://doi.org/10.1007/978-3-642-48296-0_3
    [2] N. Singh, X. Vives, Price and quantity competition in a differentiated duopoly, Rand J. Econ., 15 (1984), 546–554.
    [3] J. Häckner, A note on price and quantity competition in differentiated oligopolies, J. Econ. Theory, 93 (2000), 233–239. https://doi.org/10.1006/jeth.2000.2654 doi: 10.1006/jeth.2000.2654
    [4] J. Ma, X. Pu, The research on Cournot–Bertrand duopoly model with heterogeneous goods and its complex characteristics, Nonlinear Dyn., 72 (2013), 895–903. https://doi.org/10.1007/s11071-013-0761-7 doi: 10.1007/s11071-013-0761-7
    [5] H. Wang, J. Ma, Complexity analysis of a Cournot–Bertrand duopoly game with different expectations, Nonlinear Dyn., 78 (2014), 2759–2768. https://doi.org/10.1007/s11071-014-1623-7 doi: 10.1007/s11071-014-1623-7
    [6] L. Xu, Y. Chen, S.-H. Lee, Emission tax and strategic environmental corporate social responsibility in a Cournot–Bertrand comparison, Energ. Econ., 107 (2022), 105846. https://doi.org/10.1016/j.eneco.2022.105846 doi: 10.1016/j.eneco.2022.105846
    [7] S. S. Askar, On complex dynamics of Cournot–Bertrand game with asymmetric market information, Appl. Math. Comput., 393 (2021), 125823. https://doi.org/10.1016/j.amc.2020.125823 doi: 10.1016/j.amc.2020.125823
    [8] X. Qin, S. Li, H. Liu, Adaptive fuzzy synchronization of uncertain fractional-order chaotic systems with different structures and time-delays, Adv. Differ. Equ., 2019 (2019), 174. https://doi.org/10.1186/s13662-019-2117-1 doi: 10.1186/s13662-019-2117-1
    [9] F. A. Rihan, Delay differential equations and applications to biology, Singapore: Springer, 2021. https://doi.org/10.1007/978-981-16-0626-7
    [10] D. Mu, C. Xu, Z. Liu, Y. Pang, Further insight into bifurcation and hybrid control tactics of a chlorine dioxide-iodine-malonic acid chemical reaction model incorporating delays, MATCH Commun. Math. Comput. Chem., 89 (2023), 529–566. https://doi.org/10.46793/match.89-3.529M doi: 10.46793/match.89-3.529M
    [11] W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Math., 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
    [12] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Mathematical exploration on control of bifurcation for a plankton-oxygen dynamical model owning delay, J. Math. Chem., 62 (2024), 2709–2739. https://doi.org/10.1007/s10910-023-01543-y doi: 10.1007/s10910-023-01543-y
    [13] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 42 (2019), 1687–1697. https://doi.org/10.1007/s40840-017-0569-6 doi: 10.1007/s40840-017-0569-6
    [14] L. Liu, Q. Dong, G. Li, Exact solutions and Hyers-Ulam stability for fractional oscillation equations with pure delay, Appl. Math. Lett., 112 (2021), 106666. https://doi.org/10.1016/j.aml.2020.106666 doi: 10.1016/j.aml.2020.106666
    [15] X. Wang, H. Zhang, Y. Wang, Y. Li, Dynamic properties and numerical simulations of the fractional Hastings-Powell model with the Grünwald-Letnikov differential derivative, Int. J. Bifurcat. Chaos, 35 (2025), 2550145. https://doi.org/10.1142/S0218127425501457 doi: 10.1142/S0218127425501457
    [16] S. Zhang, H. Zhang, Y. Wang, Y. Li, Dynamic properties and numerical simulations of a fractional phytoplankton-zooplankton ecological model, Netw. Heterog. Media, 20 (2025), 648–669. https://doi.org/10.3934/nhm.2025028 doi: 10.3934/nhm.2025028
    [17] P. Yadav, S. Jahan, K. S. Nisar, Shifted fractional order Gegenbauer wavelets method for solving electrical circuits model of fractional order, Ain Shams Eng. J., 14 (2023), 102544. https://doi.org/10.1016/j.asej.2023.102544 doi: 10.1016/j.asej.2023.102544
    [18] J. Wang, H. Shi, L. Xu, L. Zang, Hopf bifurcation and chaos of tumor-Lymphatic model with two time delays, Chaos Soliton. Fract., 157 (2022), 111922. https://doi.org/10.1016/j.chaos.2022.111922 doi: 10.1016/j.chaos.2022.111922
    [19] X.-L. Gao, Z.-Y. Li, Y.-L. Wang, Chaotic dynamic behavior of a fractional-order financial system with constant inelastic demand, Int. J. Bifurcat. Chaos, 34 (2024), 2450111. https://doi.org/10.1142/S0218127424501116 doi: 10.1142/S0218127424501116
    [20] C. Huang, L. Fu, H. Wang, J. Cao, H. Liu, Extractions of bifurcation in fractional-order recurrent neural networks under neurons arbitrariness, Physica D, 468 (2024), 134279. https://doi.org/10.1016/j.physd.2024.134279 doi: 10.1016/j.physd.2024.134279
    [21] C. Han, Y.-L. Wang, Z.-Y. Li, A high-precision numerical approach to solving space fractional Gray-Scott model, Appl. Math. Lett., 125 (2022), 107759. https://doi.org/10.1016/j.aml.2021.107759 doi: 10.1016/j.aml.2021.107759
    [22] C. Han, Y.-L. Wang, Z.-Y. Li, Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative, Math. Comput. Simulat., 202 (2022), 149–163. https://doi.org/10.1016/j.matcom.2022.05.037 doi: 10.1016/j.matcom.2022.05.037
    [23] Y. Qian, Y. Liu, Y. Jiang, X. Liu, Detecting topic-level influencers in large-scale scientific networks, World Wide Web, 23 (2020), 831–851. https://doi.org/10.1007/s11280-019-00751-4 doi: 10.1007/s11280-019-00751-4
    [24] B. Xin, W. Peng, Y. Kwon, A discrete fractional-order Cournot duopoly game, Physica A, 558 (2020), 124993. https://doi.org/10.1016/j.physa.2020.124993 doi: 10.1016/j.physa.2020.124993
    [25] B. Xin, F. Cao, W. Peng, A. A. Elsadany, A Bertrand duopoly game with long-memory effects, Complexity, 2020 (2020), 2924169. https://doi.org/10.1155/2020/2924169 doi: 10.1155/2020/2924169
    [26] A. Quadir, Demand information sharing in Cournot–Bertrand model, Oper. Res. Lett., 53 (2024), 107069. https://doi.org/10.1016/j.orl.2024.107069 doi: 10.1016/j.orl.2024.107069
    [27] Y.-L. Zhu, W. Zhou, T. Chu, A. A. Elsadany, Complex dynamical behavior and numerical simulation of a Cournot–Bertrand duopoly game with heterogeneous players, Commun. Nonlinear Sci. Numer. Simulat., 101 (2021), 105898. https://doi.org/10.1016/j.cnsns.2021.105898 doi: 10.1016/j.cnsns.2021.105898
    [28] F. Gurcan, N. Kartal, S. Kartal, Bifurcation and chaos in a fractional-order Cournot duopoly game model on scale-free networks, Int. J. Bifurcat. Chaos, 34 (2024), 2450103. https://doi.org/10.1142/S0218127424501037 doi: 10.1142/S0218127424501037
    [29] A. Al-khedhairi, A. A. Elsadany, A. Elsonbaty, On the dynamics of a discrete fractional-order Cournot–Bertrand competition duopoly game, Math. Probl. Eng., 2022 (2022), 8249215. https://doi.org/10.1155/2022/8249215 doi: 10.1155/2022/8249215
    [30] A. Al-khedhairi, Differentiated Cournot duopoly game with fractional-order and its discretization, Eng. Comput., 36 (2019), 781–806. https://doi.org/10.1108/EC-07-2018-0333 doi: 10.1108/EC-07-2018-0333
    [31] L. C. Culda, E. Kaslik, M. Neamtu, N. Sîrghi, Dynamics of a discrete-time mixed oligopoly Cournot-type model with three time delays, Math. Comput. Simulat., 226 (2024), 524–539. https://doi.org/10.1016/j.matcom.2024.07.026 doi: 10.1016/j.matcom.2024.07.026
    [32] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
    [33] A. El-Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716. https://doi.org/10.1016/j.chaos.2022.112716 doi: 10.1016/j.chaos.2022.112716
    [34] C. Li, C. He, Fractional-order diffusion coupled with integer-order diffusion for multiplicative noise removal, Comput. Math. Appl., 136 (2023), 34–43. https://doi.org/10.1016/j.camwa.2023.01.036 doi: 10.1016/j.camwa.2023.01.036
    [35] P. Li, R. Gao, C. Xu, Y. Li, A. Akgül, D. Baleanu, Dynamics exploration for a fractional-order delayed zooplankton-phytoplankton system, Chaos Soliton. Fract., 166 (2023), 112975. https://doi.org/10.1016/j.chaos.2022.112975 doi: 10.1016/j.chaos.2022.112975
    [36] F. A. Rihan, K. Udhayakumar, Fractional order delay differential model of a tumor-immune system with vaccine efficacy: Stability, bifurcation and control, Chaos Soliton. Fract., 173 (2023), 113670. https://doi.org/10.1016/j.chaos.2023.113670 doi: 10.1016/j.chaos.2023.113670
    [37] J. Yuan, L. Zhao, C. Huang, M. Xiao, Stability and bifurcation analysis of a fractional predator-prey model involving two nonidentical delays, Math. Comput. Simulat., 181 (2021), 562–580. https://doi.org/10.1016/j.matcom.2020.10.013 doi: 10.1016/j.matcom.2020.10.013
    [38] C. Huang, H. Li, X. Chen, J. Cao, Bifurcations emerging from different delays in a fractional-order predator-prey model, Fractals, 29 (2021), 2150040. https://doi.org/10.1142/S0218348X21500407 doi: 10.1142/S0218348X21500407
    [39] F. A. Rihan, C. Rajivganthi, Dynamics of fractional-order delay differential model of prey-predator system with Holling-type Ⅲ and infection among predators, Chaos Soliton. Fract., 141 (2020), 110365. https://doi.org/10.1016/j.chaos.2020.110365 doi: 10.1016/j.chaos.2020.110365
    [40] C. Xu, M. Liao, P. Li, Y. Guo, Z. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w
    [41] C. Xu, Z. Liu, M. Liao, P. Li, Q. Xiao, S. Yuan, Fractional-order bidirectional associate memory (BAM) neural networks with multiple delays: the case of Hopf bifurcation, Math. Comput. Simulat., 182 (2021), 471–494. https://doi.org/10.1016/j.matcom.2020.11.023 doi: 10.1016/j.matcom.2020.11.023
    [42] C. Huang, H. Wang, J. Cao, H. Liu, Delay-dependent bifurcation conditions in a fractional-order inertial BAM neural network, Chaos Soliton. Fract., 185 (2024), 115106. https://doi.org/10.1016/j.chaos.2024.115106 doi: 10.1016/j.chaos.2024.115106
    [43] C. Xu, Z. Liu, M. Liao, L. Yao, Theoretical analysis and computer simulations of a fractional order bank data model incorporating two unequal time delays, Expert Syst. Appl., 199 (2022), 116859. https://doi.org/10.1016/j.eswa.2022.116859 doi: 10.1016/j.eswa.2022.116859
    [44] J. Shi, K. He, H. Fang, Chaos, Hopf bifurcation and control of a fractional-order delay financial system, Math. Comput. Simulat., 194 (2022), 348–364. https://doi.org/10.1016/j.matcom.2021.12.009 doi: 10.1016/j.matcom.2021.12.009
    [45] K. He, J. Shi, H. Fang, Bifurcation and chaos analysis of a fractional-order delay financial risk system using dynamic system approach and persistent homology, Math. Comput. Simulat., 223 (2024), 253–274. https://doi.org/10.1016/j.matcom.2024.04.013 doi: 10.1016/j.matcom.2024.04.013
    [46] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [47] D. Matignon, Stability results for fractional differential equations with applications to control processing, Computational engineering in system application, 2 (1996), 963–968.
    [48] H.-L. Li, L. Zhang, C. Hu, Y.-L. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(734) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog