We investigated the statistical properties of the Moran random walk $ (Y_n)_n $ in one dimension, focusing on short memory. Specifically, employing generating function techniques, we determined the cumulative distribution function and the mean of the height $ H_n $. Furthermore, we derived explicit expressions for the distribution, mean, and variance of $ Y_n $, along with its asymptotic distribution. Finally, we provided the distribution of the waiting time $ \tau_h $, which represents the number of steps required to reach a specified level $ h $, as the conclusion of our study.
Citation: Mohamed Abdelkader, Rafik Aguech. Moran random walk with reset and short memory[J]. AIMS Mathematics, 2024, 9(8): 19888-19910. doi: 10.3934/math.2024971
We investigated the statistical properties of the Moran random walk $ (Y_n)_n $ in one dimension, focusing on short memory. Specifically, employing generating function techniques, we determined the cumulative distribution function and the mean of the height $ H_n $. Furthermore, we derived explicit expressions for the distribution, mean, and variance of $ Y_n $, along with its asymptotic distribution. Finally, we provided the distribution of the waiting time $ \tau_h $, which represents the number of steps required to reach a specified level $ h $, as the conclusion of our study.
[1] | Y. Itoh, H. M. Mahmoud, Age statistics in the Moran population model, Stat. Probab. Lett., 74 (2005), 21–30. https://doi.org/10.1016/j.spl.2005.04.028. doi: 10.1016/j.spl.2005.04.028 |
[2] | Y. Itoh, H. M. Mahmoud, D. Takahashi, A stochastic model for solitons, Random Struct. Algor., 24 (2004), 51–64. https://doi.org/10.1002/rsa.10106 doi: 10.1002/rsa.10106 |
[3] | R. Aguech, A. Althagafi, C. Banderier, Height of walks with resets, the Moran model, and the discrete Gumbel distribution, Seminaire Lotharingien de Combinatoire, 87B (2024), 12. |
[4] | M. Abdelkader, On the height of one-dimensional random walk, Mathematics, 11 (2023), 4513. https://doi.org/10.3390/math11214513 doi: 10.3390/math11214513 |
[5] | R. Aguech, M. Abdelkader, Two-dimensional Moran model: Final altitude and number of resets, Mathematics, 11 (2023), 3774. https://doi.org/10.3390/math11173774 doi: 10.3390/math11173774 |
[6] | P. Bremaud, Markov chains: Gibbs fields, Monte Carlo simulation and queues, Springer Cham, 2020. https://doi.org/10.1007/978-3-030-45982-6 |
[7] | J. Filar, K. Vrieze, Competitive Markov decision processes, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-4054-9 |
[8] | E. A. Bender, Z. Gao, Part sizes of smooth supercritical compositional structures, Combin. Probab. Comput., 23 (2014), 686–716. https://doi.org/10.1017/S0963548314000315 doi: 10.1017/S0963548314000315 |
[9] | X. Gourdon, Largest component in random combinatorial structures, Discrete Math., 180 (1998), 185–209. https://doi.org/10.1016/S0012-365X(97)00115-5 doi: 10.1016/S0012-365X(97)00115-5 |
[10] | B. Bercu, A martingale approach for the elephant random walk, J. Phys. A: Math. Theor., 51 (2018), 015201. https://doi.org/10.1088/1751-8121/aa95a6 doi: 10.1088/1751-8121/aa95a6 |
[11] | R. Aguech, On the central limit theorem for the elephant random walk with gradually increasing memory and random step size, AIMS Mathematics, 9 (2024), 17784–17794. https://doi.org/10.3934/math.2024865 doi: 10.3934/math.2024865 |
[12] | R. Aguech, M. El Machkouri, Gaussian fluctuations of the elephant random walk with gradually increasing memory, J. Phys. A: Math. Theor., 57 (2024), 065203. http://dx.doi.org/10.1088/1751-8121/ad1c0d doi: 10.1088/1751-8121/ad1c0d |