This study focused on deriving Milne-type inequalities using expanded fractional integral operators. We began by establishing a key equality associated with these operators. Using this equality, we explored Milne-type inequalities for functions with convex derivatives, supported by an illustrative example for clarity. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions utilizing fractional expanded integrals. Finally, we extended our exploration to Milne-type inequalities involving functions of bounded variation.
Citation: Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat. Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions[J]. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551
This study focused on deriving Milne-type inequalities using expanded fractional integral operators. We began by establishing a key equality associated with these operators. Using this equality, we explored Milne-type inequalities for functions with convex derivatives, supported by an illustrative example for clarity. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions utilizing fractional expanded integrals. Finally, we extended our exploration to Milne-type inequalities involving functions of bounded variation.
[1] | B. Çelik, M. Ç. Gürbüz, M. E. Özdemir, E. Set, On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators, J. Inequal. Appl., 2020 (2020), 1–10. https://doi.org/10.1186/s13660-020-02512-8 doi: 10.1186/s13660-020-02512-8 |
[2] | M. A. Barakat, A. H. Soliman, A. Hyder, Langevin equations with generalized proportional Hadamard-Caputo fractional derivative, Comput. Intel. Neurosc., 2021 (2021). https://doi.org/10.1155/2021/6316477 doi: 10.1155/2021/6316477 |
[3] | T. S. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann- Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582 |
[4] | F. Ertuğral, M. Z. Sarikaya, H. Budak, On Hermite-Hadamard type inequalities associated with the generalized fractional integrals, Filomat, 36 (2022), 3981–3993. https://doi.org/10.2298/FIL2212981E doi: 10.2298/FIL2212981E |
[5] | Y. Peng, H. Fu, T. S. Du, Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Commun. Math. Stat., 2022. https://doi.org/10.1007/s40304-022-00285-8 doi: 10.1007/s40304-022-00285-8 |
[6] | A. A. Almoneef, M. A. Barakat, A. Hyder, Analysis of the fractional HIV model under proportional Hadamard-Caputo operators, Fractal Fract., 7 (2023), 220. https://doi.org/10.3390/fractalfract7030220 doi: 10.3390/fractalfract7030220 |
[7] | M. A. Khan, M. Hanif, Z. A. H. Khan, K. Ahmad, Y. M. Chu, Association of Jensen's inequality for $s$-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1–14. https://doi.org/10.1186/s13660-019-2112-9 doi: 10.1186/s13660-019-2112-9 |
[8] | M. A. Khan, J. Pecaric, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931–4945. https://doi.org/10.3934/math.2020315 doi: 10.3934/math.2020315 |
[9] | M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals, B. Korean Math. Soc., 52 (2015), 707–716. https://doi.org/10.4134/BKMS.2015.52.3.707 doi: 10.4134/BKMS.2015.52.3.707 |
[10] | M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ. Ser. Math., 29 (2014), 371–384. |
[11] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Misk. Math. Notes, 17 (2016), 1049–1059. |
[12] | M. U. Awan, M. Z. Javed, M. T. Rassias, M. A. Noor, K. I. Noor, Simpson type inequalities and applications, J. Anal., 29 (2021), 1403–1419. https://doi.org/10.1007/s41478-021-00319-4 doi: 10.1007/s41478-021-00319-4 |
[13] | M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033 |
[14] | T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using expanded $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045 |
[15] | S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30 (1999), 53–58. https://doi.org/10.5556/j.tkjm.30.1999.4207 doi: 10.5556/j.tkjm.30.1999.4207 |
[16] | M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145. |
[17] | S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 1–9. https://doi.org/10.1186/s40064-016-1683-x doi: 10.1186/s40064-016-1683-x |
[18] | J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Math., 7 (2022), 3303–3320. https://doi.org/10.3934/math.2022184 doi: 10.3934/math.2022184 |
[19] | M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45. https://doi.org/10.2478/jamsi-2013-0004 doi: 10.2478/jamsi-2013-0004 |
[20] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. |
[21] | F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1–16. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier, 2006. |
[23] | A. Hyder, M. A. Barakat, A. Fathallah, Enlarged integral inequalities through recent fractional generalized operators, J. Inequal. Appl., 2022 (2022), 95. https://doi.org/10.1186/s13660-022-02831-y doi: 10.1186/s13660-022-02831-y |
[24] | A. Hyder, M. A. Barakat, Novel improved fractional operators and their scientific applications, Adv. Differ. Equ., 2021 (2021), 1–24. https://doi.org/10.1186/s13662-021-03547-x doi: 10.1186/s13662-021-03547-x |
[25] | R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Wien: Springer-Verlag, 1997. |
[26] | S. K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, NewYork: Wiley, 1993. |
[27] | H. M. Srivastava, J. Choi, Zeta and $q$-Zeta functions and associated series and integrals, Amsterdam: Elsevier Science Publishers, 2011. |
[28] | M. V. Mihai, M. U. Awan, M. A. Noor, J. K. Kim, K. I. Noor, Hermite-Hadamard inequalities and their applications, J. Inequal. Appl., 2018 (2018), 309. https://doi.org/10.1186/s13660-018-1895-4 doi: 10.1186/s13660-018-1895-4 |