Research article Special Issues

Efficient approximate analytical technique to solve nonlinear coupled Jaulent–Miodek system within a time-fractional order

  • Received: 20 November 2023 Revised: 12 January 2024 Accepted: 15 January 2024 Published: 30 January 2024
  • MSC : 33E12, 35R11, 74H10

  • In this article, we considered the nonlinear time-fractional Jaulent–Miodek model (FJMM), which is applied to modeling many applications in basic sciences and engineering, especially physical phenomena such as plasma physics, fluid dynamics, electromagnetic waves in nonlinear media, and many other applications. The Caputo fractional derivative (CFD) was applied to express the fractional operator in the mathematical formalism of the FJMM. We implemented the modified generalized Mittag-Leffler method (MGMLFM) to show the analytical approximate solution of FJMM, which is represented by a set of coupled nonlinear fractional partial differential equations (FPDEs) with suitable initial conditions. The suggested method produced convergent series solutions with easily computable components. To demonstrate the accuracy and efficiency of the MGMLFM, a comparison was made between the solutions obtained by MGMLFM and the known exact solutions in some tables. Also, the absolute error was compared with the absolute error provided by some of the other famous methods found in the literature. Our findings confirmed that the presented method is easy, simple, reliable, competitive, and did not require complex calculations. Thus, it can be extensively applied to solve more linear and nonlinear FPDEs that have applications in various areas such as mathematics, engineering, and physics.

    Citation: Hegagi Mohamed Ali, Kottakkaran Sooppy Nisar, Wedad R. Alharbi, Mohammed Zakarya. Efficient approximate analytical technique to solve nonlinear coupled Jaulent–Miodek system within a time-fractional order[J]. AIMS Mathematics, 2024, 9(3): 5671-5685. doi: 10.3934/math.2024274

    Related Papers:

  • In this article, we considered the nonlinear time-fractional Jaulent–Miodek model (FJMM), which is applied to modeling many applications in basic sciences and engineering, especially physical phenomena such as plasma physics, fluid dynamics, electromagnetic waves in nonlinear media, and many other applications. The Caputo fractional derivative (CFD) was applied to express the fractional operator in the mathematical formalism of the FJMM. We implemented the modified generalized Mittag-Leffler method (MGMLFM) to show the analytical approximate solution of FJMM, which is represented by a set of coupled nonlinear fractional partial differential equations (FPDEs) with suitable initial conditions. The suggested method produced convergent series solutions with easily computable components. To demonstrate the accuracy and efficiency of the MGMLFM, a comparison was made between the solutions obtained by MGMLFM and the known exact solutions in some tables. Also, the absolute error was compared with the absolute error provided by some of the other famous methods found in the literature. Our findings confirmed that the presented method is easy, simple, reliable, competitive, and did not require complex calculations. Thus, it can be extensively applied to solve more linear and nonlinear FPDEs that have applications in various areas such as mathematics, engineering, and physics.



    加载中


    [1] A. A. Alzahrani, Numerical Analysis of Nonlinear Fractional System of Jaulent–Miodek Equation, Symmetry, 15 (2023), 1350. https://doi.org/10.3390/sym15071350 doi: 10.3390/sym15071350
    [2] G. C. Das, J. Sarma, C. Uberoi, Explosion of a soliton in a multicomponent plasma, Phys. Plasmas, 4 (1997), 2095–2100. https://doi.org/10.1063/1.872545 doi: 10.1063/1.872545
    [3] W. X. Ma, C. X. Li, J. He, A second Wronskian formulation of the Boussinesq equation, Nonlinear Anal., Theory Methods Appl., 70 (2009), 4245–4258. https://doi.org/10.1016/j.na.2008.09.010 doi: 10.1016/j.na.2008.09.010
    [4] T. Hong, Y. Z. Wang, Y. S. Huo, Bogoliubov quasiparticles carried by dark solitonic excitations in non-uniform Bose–Einstein condensates, Chin. Phys. Lett., 15 (1998), 550–552. https://doi.org/10.1088/0256-307X/15/8/002 doi: 10.1088/0256-307X/15/8/002
    [5] A. N. Akkilic, T. A. Sulaiman, A. P. Shakir, H. F. Ismael, H. Bulut, N. A. Shah, et al., Jaulent–Miodek evolution equation: Analytical methods and various solutions, Results Phys., 47 (2023), 106351. https://doi.org/10.1016/j.rinp.2023.106351 doi: 10.1016/j.rinp.2023.106351
    [6] W. Lyu, Z. Wang, Logistic Damping Effect in Chemotaxis Models with Density-Suppressed Motility, Adv. Nonlinear Anal., 12 (2023), 336–355. https://doi.org/10.1515/anona-2022-0263 doi: 10.1515/anona-2022-0263
    [7] I. G. Ameen, R. O. A. Taie, H. M. Ali, Two effective methods for solving nonlinear coupled time-fractional Schrödinger equations, Alexandria Eng. J., 70 (2023), 331–347. https://doi.org/10.1016/j.aej.2023.02.046 doi: 10.1016/j.aej.2023.02.046
    [8] X. Xie, T. Wang, W. Zhang, Existence of Solutions for the $(p, q)$ Laplacian Equation with Nonlocal Choquard Reaction, Appl. Math. Lett., 135 (2023), 108418. https://doi.org/10.1016/j.aml.2022.108418 doi: 10.1016/j.aml.2022.108418
    [9] W. Lyu, Z. Wang, Global Classical Solutions for a Class of Reaction-Diffusion System with Density-Suppressed Motility, Electron. Res. Arch., 30 (2022), 995–1015. https://doi.org/10.3934/era.2022052 doi: 10.3934/era.2022052
    [10] J. Zhang, J. Xie, W. Shi, Y. Huo, Z. Ren, D. He, Resonance and Bifurcation of Fractional Quintic Mathieu-Duffing System, Chaos, 33 (2023), 023131. https://doi.org/10.1063/5.0138864 doi: 10.1063/5.0138864
    [11] M. Alquran, Investigating the revisited generalized stochastic potential-KdV equation: Fractional time-derivative against proportional time-delay, Rom. J. Phys., 68 (2023), 106.
    [12] M. Alquran, K. Al-Khaled, S. Sivasundaram, H. M. Jaradat, Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation, Nonlinear Stud., 24 (2017), 235–244.
    [13] M. Alquran, The amazing fractional Maclaurin series for solving different types of fractional mathematical problems that arise in physics and engineering, Partial Differ. Equ. Appl. Math., 7 (2023), 100506. https://doi.org/10.1016/j.padiff.2023.100506 doi: 10.1016/j.padiff.2023.100506
    [14] M. Şenol, O. S. Iyiola, H. Daei Kasmaei, L. Akinyemi, Efficient analytical techniques for solving time-fractional nonlinear coupled Jaulent–Miodek system with energy-dependent Schrödinger potential, Adv. Differ. Equ., 2019 (2019), 462. https://doi.org/10.1186/s13662-019-2397-5 doi: 10.1186/s13662-019-2397-5
    [15] M. A. Bayrak, A. Demir, A new approach for space-time fractional partial differential equations by residual power series method, Appl. Math. Comput., 336 (2018), 215–230. https://doi.org/10.1016/j.amc.2018.04.032 doi: 10.1016/j.amc.2018.04.032
    [16] M. A. Hammad, A. W. Alrowaily, R. Shah, S. M. E. Ismaeel, S. A. El-Tantawy, Analytical analysis of fractional nonlinear Jaulent-Miodek system with energy-dependent Schrödinger potential, Front. Phys., 11 (2023), 1148306. https://doi.org/10.3389/fphy.2023.1148306 doi: 10.3389/fphy.2023.1148306
    [17] H. F. Ismael, T. A. Sulaiman, A. Yusuf, H. Bulut, Resonant Davey–Stewartson system: Dark, bright mixed dark-bright optical and other soliton solutions, Opt. Quantum Electron., 55 (2023), 48. https://doi.org/10.1007/s11082-022-04319-x doi: 10.1007/s11082-022-04319-x
    [18] K. K. Ali, R. Yilmazer, H. M. Baskonus, H. Bulut, New wave behaviors and stability analysis of the Gilson–Pickering equation in plasma physics, Indian J. Phys., 95 (2020), 1003–1008. https://doi.org/10.1007/s12648-020-01773-9 doi: 10.1007/s12648-020-01773-9
    [19] P. Veeresha, D. G. Prakasha, Solution for fractional Zakharov–Kuznetsov equations by using two reliable techniques, Chin. J. Phys., 60 (2019), 313–330. https://doi.org/10.1016/j.cjph.2019.05.009 doi: 10.1016/j.cjph.2019.05.009
    [20] A. Yokus, T. A. Sulaiman, H. Bulut, On the analytical and numerical solutions of the Benjamin–Bona–Mahony equation, Opt. Quantum Electron., 50 (2018), 31. https://doi.org/10.1007/s11082-017-1303-1 doi: 10.1007/s11082-017-1303-1
    [21] S. Javeed, D. Baleanu, A. Waheed, M. S. Khan, H. Affan, Analysis of homotopy perturbation method for solving fractional order differential equations, Mathematics, 7 (2019), 40. https://doi.org/10.3390/math7010040 doi: 10.3390/math7010040
    [22] H. Khan, A. Khan, P. Kumam, D. Baleanu, M. Arif, An approximate analytical solution of the Navier–Stokes equations within Caputo operator and Elzaki transform decomposition method, Adv. Differ. Equ., 2020 (2020), 622. https://doi.org/10.1186/s13662-020-03058-1 doi: 10.1186/s13662-020-03058-1
    [23] H. M. Baskonus, H. Bulut, On the numerical solutions of some fractional ordinary differential equations by fractional Adams–Bashforth–Moulton method, Open Math., 13 (2015), 547–56. https://doi.org/10.1515/math-2015-0052 doi: 10.1515/math-2015-0052
    [24] E. Pindz, K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simul., 40 (2016), 112–128. https://doi.org/10.1016/j.cnsns.2016.04.020 doi: 10.1016/j.cnsns.2016.04.020
    [25] J. H. He, L. N. Zhang, Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the Exp-function method, Phys. Lett. A, 372 (2008), 1044–1047. https://doi.org/10.1016/j.physleta.2007.08.059 doi: 10.1016/j.physleta.2007.08.059
    [26] H. Jafari, A. Kadem, D. Baleanu, Variational Iteration Method for a Fractional-Order Brusselator System, Abst. Appl. Anal., 2014 (2014), 496323. https://doi.org/10.1155/2014/496323 doi: 10.1155/2014/496323
    [27] M. Elbadri, S. A. Ahmed, Y. T. Abdalla, W. Hahidi, A New Solution of Time-Fractional Coupled KdV Equation by Using Natural Decomposition Method, Abstr. Appl. Anal., 2020 (2020), 3950816. https://doi.org/10.1155/2020/3950816 doi: 10.1155/2020/3950816
    [28] K. A. Gepreel, M. S. Mohamed, An optimal homotopy analysis method nonlinear fractional differential equation, J. Adv. Res. Dyn. Control Syst., 6 (2014), 1–10.
    [29] A. A. M. Arafa, S. Z. Rida, H. Mohamed, An application of the homotopy analysis method to the transient behavior of a biochemical reaction model, Inform. Sci. Lett., 3 (2014), 29–33. http://doi.org/10.12785/isl/030104 doi: 10.12785/isl/030104
    [30] A. A. M. Arafa, S. Z. Rida, H. Mohamed, Homotopy analysis method for solving biological population model, Commun. Theor. Phys., 56 (2011), 797–800. http://doi.org/10.1088/0253-6102/56/5/01 doi: 10.1088/0253-6102/56/5/01
    [31] A. K. Gupta, S. S. Ray, An investigation with Hermite Wavelets for accurate solution of Fractional Jaulent–Miodek equation associated with energy-dependent Schrödinger potential, Appl. Math. Comput., 270 (2015), 458–471. https://doi.org/10.1016/j.amc.2015.08.058 doi: 10.1016/j.amc.2015.08.058
    [32] M. Cinar, I. Onder, A. Secer, M. Bayram, T. Abdulkadir Sulaiman, A. Yusuf, Solving the fractional Jaulent–Miodek system via a modified Laplace decomposition method, Waves Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2057613
    [33] I. Podlubny, Fractional Differential Equations, Mathematics in Sciences and Engineering, San Diego: Academic Press, 1999.
    [34] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, Singapore: World Scientific Publishing, 2012. https://doi.org/10.1142/8180
    [35] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
    [36] A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Solitons Fractals, 39 (2009), 1486–1492. https://doi.org/10.1016/j.chaos.2007.06.034 doi: 10.1016/j.chaos.2007.06.034
    [37] H. M. Ali, A. S. Ali, M. Mahmoud, A. H. Abdel-Aty, Analytical approximate solutions of fractional nonlinear Drinfeld - Sokolov - Wilson model using modified Mittag-Leffler function, J. Ocean Eng. Sci., 2022, In press. https://doi.org/10.1016/j.joes.2022.06.006
    [38] H. M. Ali, H. Ahmad, S. Askar, I. G. Ameen, Efficient Approaches for Solving Systems of Nonlinear Time-Fractional Partial Differential Equations, Fractal Frac., 6 (2022), 32. https://doi.org/10.3390/fractalfract6010032 doi: 10.3390/fractalfract6010032
    [39] Y. Liu, H. Sun, X. Yin, B. Xin, A new Mittag-Leffler function undetermined coefficient method and its applications to fractional homogeneous partial differential equations, J. Nonlinear Sci. Appl., 10 (2017), 4515–4523. http://doi.org/10.22436/jnsa.010.08.43 doi: 10.22436/jnsa.010.08.43
    [40] H. M. Ali, An efficient approximate-analytical method to solve time-fractional KdV and KdVB equations, Inf. Sci. Lett., 9 (2020), 10.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(992) PDF downloads(104) Cited by(2)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog