This paper presents a novel nonsmooth objective penalty function for inequality constrained optimization problems. A modified flattened aggregate function, which is a smooth approximation of the max-value function, is discussed. Then, the smooth objective penalty function that contains the flattened aggregate function is proposed, and the exactness of the new function is studied. Based on this, an objective penalty function algorithm is proposed and its convergence is proven under mild conditions. Because of the flattened aggregate function, the gradient computation can usually be greatly reduced for problems with many constraints. Numerical experiments are included to illustrate the efficiency of the new algorithm through a series of numerical examples, especially for solving problems with many constraints.
Citation: Zhuolin Yan, Xiaowei Jiang, Siyao Wang. Objective penalty function method for nonlinear programming with inequality constraints[J]. AIMS Mathematics, 2024, 9(12): 33572-33590. doi: 10.3934/math.20241602
This paper presents a novel nonsmooth objective penalty function for inequality constrained optimization problems. A modified flattened aggregate function, which is a smooth approximation of the max-value function, is discussed. Then, the smooth objective penalty function that contains the flattened aggregate function is proposed, and the exactness of the new function is studied. Based on this, an objective penalty function algorithm is proposed and its convergence is proven under mild conditions. Because of the flattened aggregate function, the gradient computation can usually be greatly reduced for problems with many constraints. Numerical experiments are included to illustrate the efficiency of the new algorithm through a series of numerical examples, especially for solving problems with many constraints.
[1] | A. Forsgren, P. E. Gill, M. H. Wright, Interior methods for nonlinear optimization, SIAM Rev., 44 (2003), 525–597. https://doi.org/10.1137/S0036144502414942 doi: 10.1137/S0036144502414942 |
[2] | N. Gould, D. Orban, P. Toint, Numerical methods for large-scale nonlinear optimization, Acta Numer., 14 (2005), 299–361. https://doi.org/10.1017/S0962492904000248 doi: 10.1017/S0962492904000248 |
[3] | P. T. Boggs, J. W. Tolle, Sequential quadratic programming, Acta Numer., 4 (1995), 1–51. https://doi.org/10.1017/S0962492900002518 doi: 10.1017/S0962492900002518 |
[4] | J. B. Jian, Fast algorithm for smoothing constrained optimization: Theoretical analysis and numerical experiments, Beijing: Science Press, 2010. |
[5] | J. Herskovits, A two-stage feasible directions algorithm for nonlinear constrained optimization, Math. Program., 36 (1986), 19–38. https://doi.org/10.1007/BF02591987 doi: 10.1007/BF02591987 |
[6] | D. Q. Mayne, E. Polak, Feasible direction algorithm for optimization problems with equality and inequality constraints, Math. Program., 11 (1976), 67–80. https://doi.org/10.1007/BF01580371 doi: 10.1007/BF01580371 |
[7] | J. Nocedal, S. J. Wright, Numerical optimization, 2 Eds., New York: Springer, 2006. https://doi.org/10.1007/978-0-387-40065-5 |
[8] | G. H. Xu, Y. P. Liu, K. Cheng, Handbook of operations research fundamentals, Beijing: Science Press, 2001. |
[9] | W. I. Zangwill, Nonlinear programming via penalty function, Manage. Sci., 13 (1967), 344–358. https://doi.org/10.1287/mnsc.13.5.344 doi: 10.1287/mnsc.13.5.344 |
[10] | X. S. Li, A smooth quasi-exact penalty function for nonlinear programming, Chin. Sci. Bull., 37 (1992), 806–809. |
[11] | G. D. Pillo, L. Grippo, An exact penalty function method with global conergence properties for nonlinear programming problems, Math. Program., 36 (1986), 1–18. https://doi.org/10.1007/BF02591986 doi: 10.1007/BF02591986 |
[12] | X. X. Huang, X. Q. Yang, Duality and exact penalization for vector optimization via augumentd Lagrangian, J. Optimiz. Theory App., 111 (2001), 615–640. https://doi.org/10.1023/A:1012654128753 doi: 10.1023/A:1012654128753 |
[13] | X. Q. Yang, X. X. Huang, A nonlinear Lagrangian approach to constrained optimization problems, SIAM J. Optimiz., 11 (2001), 1119–1144. https://doi.org/10.1137/S1052623400371806 doi: 10.1137/S1052623400371806 |
[14] | S. J. Lian, Y. Q. Duan, Smoothing of the lower-order exact penalty function for inequality constrained optimization, J. Inequal. Appl., 2016 (2016), 185. https://doi.org/10.1186/s13660-016-1126-9 doi: 10.1186/s13660-016-1126-9 |
[15] | S. J. Lian, B. Z. Liu, L. S. Zhang, A family of penalty functions approximate to $l_1$ exact penalty function, Acta Math. Appl. Sin., 6 (2007), 961–971. |
[16] | S. J. Lian, Y. Q. Duan, Smoothing of the lower-order exact penalty function for inequality constrained optimization, J. Inequal. Appl., 2016 (2016), 1–12. https://doi.org/10.1186/s13660-016-1126-9 |
[17] | J. V. Burke, An exact penalization viewpoint of constrained optimization, SIAM J. Control Optim., 29 (1991), 968–998. https://doi.org/10.1137/0329054 doi: 10.1137/0329054 |
[18] | Z. Q. Meng, Q. Y. Hu, C. Y. Dang, An objective penalty function method for nonlinear programming, Appl. Math. Lett., 17 (2004), 683–689. https://doi.org/10.1016/S0893-9659(04)90105-X doi: 10.1016/S0893-9659(04)90105-X |
[19] | Z. Q. Meng, Q. Y. Hu, C. Y. Dang, A penalty function algorithm with objective parameters for nonlinear mathematical programming, J. Ind. Manag. Optim., 5 (2009), 585–601. https://doi.org/10.3934/JIMO.2009.5.585 doi: 10.3934/JIMO.2009.5.585 |
[20] | Z. Q. Meng, C. Y. Dang, M. Jiang, R. Shen, A smoothing objective penalty function algorithm for inequality constrained optimization problems, Numer. Func. Anal. Opt., 32 (2011), 806–820. https://doi.org/10.1080/01630563.2011.577262 doi: 10.1080/01630563.2011.577262 |
[21] | Z. Q. Meng, C. Y. Dang, M. Jiang, Exaceness and algorithm of an objective penalty function, J. Global Optim., 56 (2013), 691–711. https://doi.org/10.1007/s10898-012-9900-9 doi: 10.1007/s10898-012-9900-9 |
[22] | Z. Q. Meng, R. Shen, C. Y. Dang, A barrier objective penalty function algorithm for mathematical programming, JSSMS, 36 (2016), 75–92. https://doi.org/10.12341/jssms12716 doi: 10.12341/jssms12716 |
[23] | Y. Zheng, Z. Q. Meng, R. Shen, An M-objective penalty function algorithm under big penalty parameters, J. Syst. Sci. Complex., 29 (2016), 455–471. https://doi.org/10.1007/s11424-015-3204-3 doi: 10.1007/s11424-015-3204-3 |
[24] | J. Qiu, J. G. Yu, S. J. Lian, Smoothing approximation to the new exact penalty function with two parameters, Asia Pac. J. Oper. Res., 38 (2021), 1–19. https://doi.org/10.1142/S0217595921400108 doi: 10.1142/S0217595921400108 |
[25] | S. J. Lian, S. T. Meng, Y. J. Wang, An objective penalty function-based method for inequality constrained minimization problem, Math. Probl. Eng., 6 (2018), 1–7. https://doi.org/10.1155/2018/7484256 doi: 10.1155/2018/7484256 |
[26] | J. H. Tang, W. Wang, Y. F. Xu, Two class of smooth objective penalty functions for constrained problem, Numer. Func. Anal. Opt., 40 (2019), 341–364. https://doi.org/10.1080/01630563.2018.1554586 doi: 10.1080/01630563.2018.1554586 |
[27] | J. H. Tang, W. Wang, Y. F. Xu, Lower-order smoothed objective penalty functions based on filling properties for constrained optimization problems, Optimization, 71 (2022), 1–23. https://doi.org/10.1080/02331934.2020.1818746 doi: 10.1080/02331934.2020.1818746 |
[28] | X. W. Jiang, Y. T. Yang, Y. L. Lu, Flattened aggregate function method for nonlinear programming with many complicated constraints, Numer. Algorithms, 86 (2021), 103–122. https://doi.org/10.1007/s11075-020-00881-1 doi: 10.1007/s11075-020-00881-1 |
[29] | Z. Y. Zhou, The flattened aggregate constraint homotopy method for nonlinear programming problems with many nonlinear constraints, Abstr. Appl. Anal., 4 (2014), 1–14. https://doi.org/10.1155/2014/430932 doi: 10.1155/2014/430932 |