Research article Special Issues

Investment risk forecasting model using extreme value theory approach combined with machine learning

  • Received: 20 September 2024 Revised: 09 November 2024 Accepted: 12 November 2024 Published: 22 November 2024
  • MSC : 60G25, 62M10, 62M20, 62M45, 62P05, 90C90, 91G70

  • Investment risk forecasting is challenging when the stock market is characterized by non-linearity and extremes. Under these conditions, VaR estimation based on the assumption of distribution normality becomes less accurate. Combining extreme value theory (EVT) with machine learning (ML) produces a model that detects and learns heavy tail patterns in data distributions containing extreme values while being effective in non-linear systems. We aimed to develop an investment risk forecasting model in the capital market with non-linear and extreme characteristics using the VaR method of the EVT approach combined with ML (VaRGPD-ML(α)). The combination of methods used is a multivariate time series forecasting model with RNN, LSTM, and GRU algorithms to obtain ML-based returns. The EVT method of the POT approach was used to model extremes. The VaR method was used for investment risk estimation. The backtesting method was used to validate the model. Our results showed that determining the threshold based on the normal distribution will identify extreme values with the ideal number, minimum bias, and distribution of extreme data following GPD. The VaRGPD-ML(α) model was valid in all samples based on backtesting at α = 0.95 and α = 0.99. Generally, this model produces a greater estimated value of investment risk than the VaRGPD(α) model at the 95% confidence level.

    Citation: Melina Melina, Sukono, Herlina Napitupulu, Norizan Mohamed. Investment risk forecasting model using extreme value theory approach combined with machine learning[J]. AIMS Mathematics, 2024, 9(11): 33314-33352. doi: 10.3934/math.20241590

    Related Papers:

  • Investment risk forecasting is challenging when the stock market is characterized by non-linearity and extremes. Under these conditions, VaR estimation based on the assumption of distribution normality becomes less accurate. Combining extreme value theory (EVT) with machine learning (ML) produces a model that detects and learns heavy tail patterns in data distributions containing extreme values while being effective in non-linear systems. We aimed to develop an investment risk forecasting model in the capital market with non-linear and extreme characteristics using the VaR method of the EVT approach combined with ML (VaRGPD-ML(α)). The combination of methods used is a multivariate time series forecasting model with RNN, LSTM, and GRU algorithms to obtain ML-based returns. The EVT method of the POT approach was used to model extremes. The VaR method was used for investment risk estimation. The backtesting method was used to validate the model. Our results showed that determining the threshold based on the normal distribution will identify extreme values with the ideal number, minimum bias, and distribution of extreme data following GPD. The VaRGPD-ML(α) model was valid in all samples based on backtesting at α = 0.95 and α = 0.99. Generally, this model produces a greater estimated value of investment risk than the VaRGPD(α) model at the 95% confidence level.



    加载中


    [1] Y. Cao, Extreme risk spillovers across financial markets under different crises, Econ. Model., 116 (2022), 106026. https://doi.org/10.1016/j.econmod.2022.106026 doi: 10.1016/j.econmod.2022.106026
    [2] H. Y. Liu, A. Manzoor, C. Wang, L. Zhang, Z. Manzoor, The COVID-19 outbreak and affected countries stock markets response, Int. J. Environ. Res. Public Health., 17 (2020), 2800. https://doi.org/10.3390/ijerph17082800 doi: 10.3390/ijerph17082800
    [3] D. Chaerani, H. Napitupulu, A. Z. Irmansyah, A systematic literature review on optimization modeling to electricity strategy business during Covid-19 pandemic, Eng. Lett., 31 (2023), 1–20.
    [4] S. S. Jeris, R. D. Nath, Covid-19, oil price and UK economic policy uncertainty: Evidence from the ARDL approach, Quant. Financ. Econ., 4 (2020), 503–514. https://doi.org/10.3934/QFE.2020023 doi: 10.3934/QFE.2020023
    [5] Y. Fang, Z. Shao, The Russia-Ukraine conflict and volatility risk of commodity markets, Financ. Res. Lett., 50 (2022), 103264. https://doi.org/10.1016/j.frl.2022.103264 doi: 10.1016/j.frl.2022.103264
    [6] K. Yang, Y. Wei, S. Li, J. M. He, Geopolitical risk and renewable energy stock markets: An insight from multiscale dynamic risk spillover, J. Clean. Prod., 279 (2021), 123429. https://doi.org/10.1016/j.jclepro.2020.123429 doi: 10.1016/j.jclepro.2020.123429
    [7] F. He, B. Lucey, Z. Wang, Trade policy uncertainty and its impact on the stock market-evidence from China-US trade conflict, Financ. Res. Lett., 40 (2021), 101753. https://doi.org/10.1016/j.frl.2020.101753 doi: 10.1016/j.frl.2020.101753
    [8] Y. Shi, L. Wang, J. Ke, Does the US-China trade war affect co-movements between US and Chinese stock markets? Res. Int. Bus. Financ., 58 (2021), 101477. https://doi.org/10.1016/j.ribaf.2021.101477 doi: 10.1016/j.ribaf.2021.101477
    [9] J. P. Morgan, Risk metrics technical document, New York: RiskMetrics, 1996.
    [10] M. R. Nieto, E. Ruiz, Frontiers in VaR forecasting and backtesting, Int. J. Forecast., 32 (2016), 475–501. https://doi.org/10.1016/j.ijforecast.2015.08.003 doi: 10.1016/j.ijforecast.2015.08.003
    [11] X. Yu, Z. Zhao, X. Zhang, Q. Y. Zhang, Y. L. Liu, C. Sun, Deep-learning-based open set fault diagnosis by extreme value theory, IEEE Trans. Ind. Informatics., 18 (2022), 185–196. https://doi.org/10.1109/TⅡ.2021.3070324 doi: 10.1109/TⅡ.2021.3070324
    [12] G. Petneházi, Quantile convolutional neural networks for value at risk forecasting, Mach. Learn. Appl., 6 (2021), 100096. https://doi.org/10.1016/j.mlwa.2021.100096 doi: 10.1016/j.mlwa.2021.100096
    [13] A. F. Rossignolo, M. D. Fethi, M. Shaban, Market crises and Basel capital requirements: Could Basel Ⅲ have been different? Evidence from Portugal, Ireland, Greece and Spain (PIGS), J. Bank. Financ., 37 (2013), 1323–1339. https://doi.org/10.1016/j.jbankfin.2012.08.021 doi: 10.1016/j.jbankfin.2012.08.021
    [14] R. Gençay, F. Selçuk, Extreme value theory and value-at-risk: Relative performance in emerging markets, Int. J. Forecast., 20 (2004), 287–303. https://doi.org/10.1016/j.ijforecast.2003.09.005 doi: 10.1016/j.ijforecast.2003.09.005
    [15] A. J. Mcneil, D. Mathematik, Extreme value theory for risk managers a general introduction to extreme risk, Intern. Model. CAD Ⅱ., 3 (1999), 1–22.
    [16] S. Hubbert, Essential mathematics for market risk management, West Sussex, United Kingdom: John Wiley & Sons, Ltd, 2012. https://doi.org/10.1002/9781118467213
    [17] X. Ma, D. Zheng, G. Ding, J. M. Wang, "Extreme utilization" theory and practice in gas storages with complex geological conditions, Pet. Explor. Dev., 50 (2023), 419–432. https://doi.org/10.1016/S1876-3804(23)60397-0 doi: 10.1016/S1876-3804(23)60397-0
    [18] G. Evin, P. D. Sielenou, N. Eckert, P. Naveau, P. Hagenmuller, S. Morin, Extreme avalanche cycles: Return levels and probability distributions depending on snow and meteorological conditions, Weather Clim. Extrem., 33 (2021), 100344. https://doi.org/10.1016/j.wace.2021.100344 doi: 10.1016/j.wace.2021.100344
    [19] F. M. Longin, From value at risk to stress testing: The extreme value approach, J. Bank. Financ., 24 (2000), 1097–1130. https://doi.org/10.1016/S0378-4266(99)00077-1 doi: 10.1016/S0378-4266(99)00077-1
    [20] P. Embrechts, M. V. Wüthrich, Recent challenges in actuarial science, Annu. Rev. Stat. Appl., 9 (2022), 119–140. https://doi.org/10.1146/annurev-statistics-040120-030244 doi: 10.1146/annurev-statistics-040120-030244
    [21] A. J. McNeil, Calculating quantile risk measures for financial return series using extreme value theory, Zürich, 1998. https://doi.org/10.3929/ethz-a-004320029
    [22] X. Ji, J. Wang, Z. H. Yan, A stock price prediction method based on deep learning technology, Int. J. Crowd Sci., 5 (2021), 55–72. https://doi.org/10.1108/IJCS-05-2020-0012 doi: 10.1108/IJCS-05-2020-0012
    [23] T. G. Bali, S. N. Neftci, Disturbing extremal behavior of spot rate dynamics, J. Empir. Financ., 10 (2003), 455–477. https://doi.org/10.1016/S0927-5398(02)00070-1 doi: 10.1016/S0927-5398(02)00070-1
    [24] A. J. McNeil, R. Frey, Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach, J. Empir. Financ., 7 (2000), 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8 doi: 10.1016/S0927-5398(00)00012-8
    [25] A. K. Singh, D. E. Allen, P. J. Robert, Extreme market risk and extreme value theory, Math. Comput. Simul., 94 (2013), 310–328. https://doi.org/10.1016/j.matcom.2012.05.010 doi: 10.1016/j.matcom.2012.05.010
    [26] M. Karmakar, S. Paul, Intraday portfolio risk management using VaR and CVaR: A CGARCH-EVT-Copula approach, Int. J. Forecast., 35 (2019), 699–709. https://doi.org/10.1016/j.ijforecast.2018.01.010 doi: 10.1016/j.ijforecast.2018.01.010
    [27] T. Ren, S. Li, S. Zhang, Stock market extreme risk prediction based on machine learning: Evidence from the American market, North Am. J. Econ. Financ., 74 (2024), 102241. https://doi.org/10.1016/j.najef.2024.102241 doi: 10.1016/j.najef.2024.102241
    [28] S. Karim, M. Shafiullah, M. A. Naeem, When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets, Int. Rev. Financ. Anal., 93 (2024), 103202. https://doi.org/10.1016/j.irfa.2024.103202 doi: 10.1016/j.irfa.2024.103202
    [29] H. M. Blom, P. E. Lange, M. Risstad, Estimating value-at-risk in the EURUSD currency cross from implied volatilities using machine learning methods and quantile regression, J. Risk Financ. Manag., 16 (2023), 1–23. https://doi.org/10.3390/jrfm16070312 doi: 10.3390/jrfm16070312
    [30] M. Li, Financial investment risk prediction under the application of information interaction firefly algorithm combined with graph convolutional network, PLoS One, 18 (2023), 1–18. https://doi.org/10.1371/journal.pone.0291510 doi: 10.1371/journal.pone.0291510
    [31] C. Hamzaçebi, D. Akay, F. Kutay, Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting, Expert Syst. Appl., 36 (2009), 3839–3844. https://doi.org/10.1016/j.eswa.2008.02.042 doi: 10.1016/j.eswa.2008.02.042
    [32] K. E. Arun Kumar, D. V. Kalaga, C. M. S. Kumar, M. Kawaji, T. M. Brenza, Forecasting of COVID-19 using deep layer recurrent neural networks (RNNs) with gated recurrent units (GRUs) and long short-term memory (LSTM) cells, Chaos Soliton. Fract., 146 (2021), 110861. https://doi.org/10.1016/j.chaos.2021.110861 doi: 10.1016/j.chaos.2021.110861
    [33] S. Ahmed, R. K. Chakrabortty, D. L. Essam, W. P. Ding, Poly-linear regression with augmented long short term memory neural network: Predicting time series data, Inf. Sci. (Ny)., 606 (2022), 573–600. https://doi.org/10.1016/j.ins.2022.05.078 doi: 10.1016/j.ins.2022.05.078
    [34] F. Ricchiuti, G. Sperlí, An advisor neural network framework using LSTM-based informative stock analysis, Expert Syst. Appl., 259 (2025), 125299. https://doi.org/10.1016/j.eswa.2024.125299 doi: 10.1016/j.eswa.2024.125299
    [35] J. Wang, X. Y. Wang, X. Wang, International oil shocks and the volatility forecasting of Chinese stock market based on machine learning combination models, North Am. J. Econ. Financ., 2023, 102065. https://doi.org/10.1016/j.najef.2023.102065 doi: 10.1016/j.najef.2023.102065
    [36] G. Kotsompolis, K. N. Konstantakis, D. L. Stamos, P. G. Michaelides, Oil prices and developing stock markets: Evidence from East Asia, Dev. Sustain. Econ. Financ., 1 (2024), 100006. https://doi.org/10.1016/j.dsef.2024.100006 doi: 10.1016/j.dsef.2024.100006
    [37] Z. Liu, J. Hu, S. Zhang, Z. P. He, Risk spillovers among oil, gold, stock, and foreign exchange markets: Evidence from G20 economies, North Am. J. Econ. Financ., 74 (2024), 102249. https://doi.org/10.1016/j.najef.2024.102249 doi: 10.1016/j.najef.2024.102249
    [38] L. Chen, F. Wen, W. Li, H. Yin, L. L. Zhao, Extreme risk spillover of the oil, exchange rate to Chinese stock market: Evidence from implied volatility indexes, Energy Econ., 107 (2022), 105857. https://doi.org/10.1016/j.eneco.2022.105857 doi: 10.1016/j.eneco.2022.105857
    [39] K. Gokmenoglu, B. M. Eren, S. Hesami, Exchange rates and stock markets in emerging economies: New evidence using the Quantile-on-Quantile approach, Quant. Financ. Econ., 5 (2021), 94–110. https://doi.org/10.3934/QFE.2021005 doi: 10.3934/QFE.2021005
    [40] M. Zolfaghari, B. Sahabi, Impact of foreign exchange rate on oil companies risk in stock market: A Markov-switching approach, J. Comput. Appl. Math., 317 (2017), 274–289. https://doi.org/10.1016/j.cam.2016.10.012 doi: 10.1016/j.cam.2016.10.012
    [41] Z. Lyu, A. Ororbia, T. Desell, Online evolutionary neural architecture search for multivariate non-stationary time series forecasting, Appl. Soft Comput., 145 (2023), 110522. https://doi.org/10.1016/j.asoc.2023.110522 doi: 10.1016/j.asoc.2023.110522
    [42] C. Y. Lin, J. A. Lobo-Marques, Stock market prediction using artificial intelligence: A systematic review of systematic reviews, Soc. Sci. Humanit. Open., 9 (2024), 100864. https://doi.org/10.1016/j.ssaho.2024.100864 doi: 10.1016/j.ssaho.2024.100864
    [43] Melina, Sukono, H. Napitupulu, N. Mohamed, A conceptual model of investment-risk prediction in the stock market using extreme value theory with machine learning: A semisystematic literature review, Risks, 11 (2023), 1–24. https://doi.org/10.3390/risks11030060 doi: 10.3390/risks11030060
    [44] A. Mittal, A. Goel, Stock prediction using twitter sentiment analysis, Standford University, CS229, 2012, 1–5.
    [45] I. Abdullayev, E. Akhmetshin, I. Kosorukova, E. Klochko, W. Cho, G. P. Joshi, Modeling of extended osprey optimization algorithm with Bayesian neural network: An application on Fintech to predict financial crisis, AIMS Math., 9 (2024), 17555–17577. https://doi.org/10.3934/math.2024853 doi: 10.3934/math.2024853
    [46] J. H. Lee, J. K. Hong, Comparative performance analysis of vibration prediction using RNN techniques, Electronics, 11 (2022), 3619. https://doi.org/10.3390/electronics11213619 doi: 10.3390/electronics11213619
    [47] W. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115–133. https://doi.org/10.1007/BF02478259 doi: 10.1007/BF02478259
    [48] S. Haykin, Neural networks and learning machines, New York: Pearson Education, Inc, 2009.
    [49] M. I. Jordan, Attractor dynamics and parallelism in a connectionist sequential machine, IEEE Press, 1990.
    [50] J. L. Elman, Finding structure in time, Cogn. Sci., 14 (1990), 179–211. https://doi.org/10.1016/0364-0213(90)90002-E doi: 10.1016/0364-0213(90)90002-E
    [51] S. H. Sung, J. M. Kim, B. K. Park, S. J. Kim, A study on Cryptocurrency log-return price prediction using multivariate time-series model, Axioms, 11 (2022), 1–17. https://doi.org/10.3390/axioms11090448 doi: 10.3390/axioms11090448
    [52] K. J. Lang, A. H. Waibel, G. E. Hinton, A time-delay neural network architecture for isolated word recognition, Neural Networks, 3 (1990), 23–43. https://doi.org/10.1016/0893-6080(90)90044-L doi: 10.1016/0893-6080(90)90044-L
    [53] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [54] S. Zaheer, N. Anjum, S. Hussain, A. D. Algarni, J. Iqbal, S. Bourouis, et al., A multi parameter forecasting for stock time series data using LSTM and deep learning model, Mathematics, 11 (2023), 590. https://doi.org/10.3390/math11030590 doi: 10.3390/math11030590
    [55] K. Zhang, X. Huo, K. Shao, Temperature time series prediction model based on time series decomposition and Bi-LSTM network, Mathematics, 11 (2023), 2060. https://doi.org/10.3390/math11092060 doi: 10.3390/math11092060
    [56] K. Smagulova, A. P. James, A survey on LSTM memristive neural network architectures and applications, Eur. Phys. J. Spec. Top., 228 (2019), 2313–2324. https://doi.org/10.1140/epjst/e2019-900046-x doi: 10.1140/epjst/e2019-900046-x
    [57] Y. Su, C. C. J. Kuo, On extended long short-term memory and dependent bidirectional recurrent neural network, Neurocomputing, 356 (2019), 151–161. https://doi.org/10.1016/j.neucom.2019.04.044 doi: 10.1016/j.neucom.2019.04.044
    [58] B. C. Mateus, M. Mendes, J. T. Farinha., R. Assis, A. M. Cardoso, Comparing LSTM and GRU models to predict the condition of a pulp paper press, Energies, 14 (2021), 6958. https://doi.org/10.3390/en14216958 doi: 10.3390/en14216958
    [59] M. S. Alam, M. Murshed, P. Manigandan, D. Pachiyappan, S. Z. Abduvaxitovna, Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools, Resour. Policy., 81 (2023), 103342. https://doi.org/10.1016/j.resourpol.2023.103342 doi: 10.1016/j.resourpol.2023.103342
    [60] M. Melina, A. Sambas, S. Firman, Artificial neural network-based machine learning approach to stock market prediction model on the Indonesia stock exchange during the COVID-19, Eng. Lett., 30 (2022), 988–1000.
    [61] M. G. M. Ghazal, Y. A. Tashkandy, O. S. Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, AIMS Math., 9 (2024), 17634–17656. https://doi.org/10.3934/math.2024857 doi: 10.3934/math.2024857
    [62] C. C. Aggarwal, Neural networks and deep learning, Cham: Springer International Publishing, 2018.
    [63] S. Coles, An introduction to statistical modeling of extreme values, London: Springer-Verlag London limited, 2001. https://doi.org/10.1007/978-1-4471-3675-0
    [64] A. Ourir, W. Snoussi, Markets liquidity risk under extremal dependence: Analysis with VaRs methods, Econ. Model., 29 (2012), 1830–1836. https://doi.org/10.1016/j.econmod.2012.05.036 doi: 10.1016/j.econmod.2012.05.036
    [65] S. I. Hussain., S. Li, Modeling the distribution of extreme returns in the Chinese stock market, J. Int. Financ. Mark. Institutions Money, 34 (2015), 263–276. https://doi.org/10.1016/j.intfin.2014.11.007 doi: 10.1016/j.intfin.2014.11.007
    [66] M. H. Pham., C. Tsokos, B. J. Choi, Maximum likelihood estimation for the generalized pareto distribution and Goodness-of-Fit test with censored data, J. Mod. Appl. Stat. Meth., 17 (2019), eP2608. https://doi.org/10.22237/jmasm/1553261471 doi: 10.22237/jmasm/1553261471
    [67] M. Melina, Sukono, H. Napitupulu, N. Mohamed, Modeling of machine learning-based extreme value theory in stock investment risk prediction: A systematic literature review, Big Data, 2024, 1–20. https://doi.org/10.1089/big.2023.0004 doi: 10.1089/big.2023.0004
    [68] A. J. Mcneil, T. Saladin, The peaks over thresholds method for estimating high quantiles of Loss distributions, In: Proceedings of 28th International ASTIN Colloquium, Zurich: ETH Zentrum, 1998, 23–43.
    [69] A. A. Balkema, L. Haan, Residual life time at great age, Ann. Probab., 2 (1974), 792–804. https://doi.org/10.1214/aop/1176996548 doi: 10.1214/aop/1176996548
    [70] J. Pickands, Statistical inference using extreme order statistics, Ann. Stat., 3 (1975), 119–131. https://doi.org/10.1214/aos/1176343003 doi: 10.1214/aos/1176343003
    [71] A. F. Rossignolo, M. D. Fethi, M. Shaban, Value-at-risk models and Basel capital charges: Evidence from emerging and frontier stock markets, J. Financ. Stab., 8 (2012), 303–319. https://doi.org/10.1016/j.jfs.2011.11.003 doi: 10.1016/j.jfs.2011.11.003
    [72] C. Omari, S. Mundia, I. Ngina, Forecasting value-at-risk of financial markets under the global pandemic of COVID-19 using conditional extreme value theory, J. Math. Financ., 10 (2020), 569–597. https://doi.org/10.4236/jmf.2020.104034 doi: 10.4236/jmf.2020.104034
    [73] K. Kuester, S. Mittnik, M. S. Paolella, Value-at-risk prediction: A comparison of alternative strategies, J. Financ. Econom., 4 (2006), 53–89. https://doi.org/10.1093/jjfinec/nbj002 doi: 10.1093/jjfinec/nbj002
    [74] P. Kupiec, Techniques for verifying the accuracy of risk measurement models, J. Deriv., 3 (1995), 73–84.
    [75] Z. Zhan, S. K. Kim, Versatile time-window sliding machine learning techniques for stock market forecasting, Artif. Intell. Rev., 57 (2024), 209. https://doi.org/10.1007/s10462-024-10851-x doi: 10.1007/s10462-024-10851-x
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(794) PDF downloads(131) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog