Research article

Stability of stationary solutions to outflow problem for compressible viscoelastic system in one dimensional half space

  • Received: 24 September 2024 Revised: 06 November 2024 Accepted: 06 November 2024 Published: 21 November 2024
  • MSC : 35Q35, 35B40, 76N10

  • The system of equations describing motion of compressible viscoelastic fluids is considered in a one dimensional half space under the outflow boundary condition. We investigate the existence and stability of stationary solutions. It is shown that the stationary solution exists for large Mach number and small number of propagation speed of elastic wave. We next show that the stationary solution is asymptotically stable, provided that the initial perturbation is sufficiently small.

    Citation: Yusuke Ishigaki, Yoshihiro Ueda. Stability of stationary solutions to outflow problem for compressible viscoelastic system in one dimensional half space[J]. AIMS Mathematics, 2024, 9(11): 33215-33253. doi: 10.3934/math.20241585

    Related Papers:

  • The system of equations describing motion of compressible viscoelastic fluids is considered in a one dimensional half space under the outflow boundary condition. We investigate the existence and stability of stationary solutions. It is shown that the stationary solution exists for large Mach number and small number of propagation speed of elastic wave. We next show that the stationary solution is asymptotically stable, provided that the initial perturbation is sufficiently small.



    加载中


    [1] Y. Bai, T. Zhang, The pointwise estimates of solutions for the 3D compressible viscoelastic fluids, J. Differ. Equ., 356 (2023), 336–374. https://doi.org/10.1016/j.jde.2023.01.048 doi: 10.1016/j.jde.2023.01.048
    [2] Q. Chen, G. Wu, The 3D compressible viscoelastic fluid in a bounded domain, Commun. Math. Sci., 16 (2018), 1303–1323.
    [3] Y. I. Dimitrienko, Tensor analysis and nonlinear tensor functions, Berlin: Springer, 2002.
    [4] M. Giga, A. Kirshtein, C. Liu, Variational modeling and complex fluids, In : Handbooks of Mathematical Analysis in Mechanics of Viscous Fluids, Berlin: Springer, 2018, 73–113.
    [5] M. E. Gurtin, An introduction to continuum mechanics, London: Academic Press, 1981.
    [6] A. Haruki, Y. Ishigaki, Stability of time-periodic parallel flow of compressible viscoelastic system in an infinite layer, Adv. Math. Sci. Appl., 30 (2021), 65–103.
    [7] X. Hu, D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows, J. Differ. Equ., 250 (2011), 1200–1231. https://doi.org/10.1016/j.jde.2010.10.017 doi: 10.1016/j.jde.2010.10.017
    [8] X. Hu, G. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows, SIAM J. Math. Anal., 45 (2013), 2815–2833. https://doi.org/10.1137/120892350 doi: 10.1137/120892350
    [9] X. Hu, D. Wang, The initial-boundary value problem for the compressible viscoelastic flows, Discrete Contin. Dyn. Syst., 35 (2015), 917–934. https://doi.org/10.3934/dcds.2015.35.917 doi: 10.3934/dcds.2015.35.917
    [10] Y. Ishigaki, Global existence of solutions of the compressible viscoelastic fluid around a parallel flow, J. Math. Fluid Mech., 20 (2018), 2073–2104. https://doi.org/10.1007/s00021-018-0401-6 doi: 10.1007/s00021-018-0401-6
    [11] Y. Kagei, S. Kawashima, Local solvability of an initial boundary value problem for a quasilinear hyperbolic-parabolic system, J. Hyperbol. Differ. Equ., 3 (2006), 195–232. https://doi.org/10.1142/S0219891606000768 doi: 10.1142/S0219891606000768
    [12] Y. Kagei, S. Kawashima, Stability of planar stationary solutions to the compressible Navier-Stokes Equation on the half space, Commun. Math. Phys., 266 (2006), 401–430. https://doi.org/10.1007/s00220-006- doi: 10.1007/s00220-006-
    [13] S. Kawashima, S. Nishibata, P. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space, Commun. Math. Phys., 240 (2003), 483–500. https://doi.org/10.1007/s00220-003-0909-2 doi: 10.1007/s00220-003-0909-2
    [14] S. Kawashima, P. Zhu, Asymptotic stability of nonlinear wave for the compressible Navier-Stokes equations in the half space, J. Differ. Equ., 244 (2008), 3151–3179. https://doi.org/10.1016/j.jde.2008.01.020 doi: 10.1016/j.jde.2008.01.020
    [15] S. Kawashima, P. Zhu, Asymptotic stability of rarefaction wave for the Navier-Stokes equations for a compressible fluid in the half space, Arch. Ration. Mech. Anal., 194 (2009), 105–132. https://doi.org/10.1007/s00205-008-0191-8 doi: 10.1007/s00205-008-0191-8
    [16] Y. Li, R. Wei, Z. Yao, Optimal decay rates for the compressible viscoelastic flows, J. Math. Phys., 57 (2016), 111506. https://doi.org/10.1063/1.4967975 doi: 10.1063/1.4967975
    [17] F. Lin, C. Liu, P. Zhang, On hydrodynamics of viscoelastic fluids, Commun. Pure Appl. Math., 58 (2005), 1437–1471. https://doi.org/10.1002/cpa.20074 doi: 10.1002/cpa.20074
    [18] A. Matsumura, Inflow and outflow problems in the half space for a one-dimensional isentropic model system of compressible viscous gas, Meth. Appl. Anal., 8 (2001), 645–666.
    [19] A. Morando, Y. Trakhinin, P. Trebeschi, Structural stability of shock waves in 2D compressible elastodynamics, Math. Ann., 378 (2020), 1471–1504. https://doi.org/10.1007/s00208-019-01920-6 doi: 10.1007/s00208-019-01920-6
    [20] T. Nakamura, S. Nishibata, Convergence rate toward planar stationary waves for compressible viscous fluid in multidimensional half space, SIAM J. Math. Anal., 41 (2009), 1757–1791. https://doi.org/10.1137/090755357 doi: 10.1137/090755357
    [21] T. Nakamura, S. Nishibata, T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equations in a half line, J. Differ. Equ., 241 (2007), 94–111. https://doi.org/10.1016/j.jde.2007.06.016 doi: 10.1016/j.jde.2007.06.016
    [22] T. Nakamura, Y. Ueda, S. Kawashima, Convergence rate toward degenerate stationary wave for compressible viscous gases, Yokohama Publ., 2010,239–248.
    [23] J. Qian, Initial boundary value problems for the compressible viscoelastic fluid, J. Differ. Equ., 250 (2011), 848–865. https://doi.org/10.1016/j.jde.2010.07.026 doi: 10.1016/j.jde.2010.07.026
    [24] J. Qian, Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium, Arch. Ration. Mech. Anal., 198 (2010), 835–868. https://doi.org/10.1007/s00205-010-0351-5 doi: 10.1007/s00205-010-0351-5
    [25] T. C. Sideris, B. Thomases, Global existence for 3D incompressible isotropic elastodynamics via the incompressible limit, Comm. Pure Appl. Math., 57 (2004), 1–39.
    [26] Y. Trakhinin, On weak stability of shock waves in 2D compressible elastodynamics, J. Hyperbol. Differ. Equ., 19 (2022), 157–173. https://doi.org/10.1142/S0219891622500035 doi: 10.1142/S0219891622500035
    [27] T. Wang, On the long-time behavior of solution for compressible Navier-Stokes system with outflow boundary condition, J. Differ. Equ., 323 (2022), 312–358. https://doi.org/10.1016/j.jde.2022.03.033 doi: 10.1016/j.jde.2022.03.033
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(188) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog