Research article Special Issues

L0-Norm based Image Pansharpening by using population-based algorithms

  • Received: 05 September 2024 Revised: 30 October 2024 Accepted: 04 November 2024 Published: 18 November 2024
  • MSC : 68410, 68T05, 68T20, 68W50, 94a08

  • Earth observation satellites capture panchromatic images at high spatial resolution and multispectral images at lower resolution to optimize the use of their onboard energy sources. This results in a technical necessity to synthesize high-resolution multispectral images from these data. Pansharpening techniques aim to combine the spatial detail of panchromatic images with the spectral information of multispectral images. However, due to the discrete nature of these images and their varying local statistical properties, many pansharpening methods suffer from numerical artifacts such as chromatic and spatial distortions. This paper introduces the L0-Norm-based pansharpening method (L0pan), which addressed these challenges by maximizing the number of similar pixels between the synthesized pansharpened image and the original panchromatic and multispectral images. L0pan was optimized using a population-based colony search algorithm, enabling it to effectively balance both chromatic fidelity and spatial resolution. Extensive experiments across nine different datasets and comparison with nine other pansharpening methods using ten quality metrics demonstrated that L0pan significantly outperformed its counterparts. Notably, the colony search algorithm yielded the best overall results, highlighting the algorithm's strength in refining pansharpening accuracy. This study contributed to the advancement of pansharpening techniques, offering a method that preserved both chromatic and spatial details more effectively than existing approaches.

    Citation: Mehmet Akif Günen, María-Luisa Pérez-Delgado, Erkan Beşdok. L0-Norm based Image Pansharpening by using population-based algorithms[J]. AIMS Mathematics, 2024, 9(11): 32578-32628. doi: 10.3934/math.20241561

    Related Papers:

  • Earth observation satellites capture panchromatic images at high spatial resolution and multispectral images at lower resolution to optimize the use of their onboard energy sources. This results in a technical necessity to synthesize high-resolution multispectral images from these data. Pansharpening techniques aim to combine the spatial detail of panchromatic images with the spectral information of multispectral images. However, due to the discrete nature of these images and their varying local statistical properties, many pansharpening methods suffer from numerical artifacts such as chromatic and spatial distortions. This paper introduces the L0-Norm-based pansharpening method (L0pan), which addressed these challenges by maximizing the number of similar pixels between the synthesized pansharpened image and the original panchromatic and multispectral images. L0pan was optimized using a population-based colony search algorithm, enabling it to effectively balance both chromatic fidelity and spatial resolution. Extensive experiments across nine different datasets and comparison with nine other pansharpening methods using ten quality metrics demonstrated that L0pan significantly outperformed its counterparts. Notably, the colony search algorithm yielded the best overall results, highlighting the algorithm's strength in refining pansharpening accuracy. This study contributed to the advancement of pansharpening techniques, offering a method that preserved both chromatic and spatial details more effectively than existing approaches.



    加载中


    [1] I. Amro, J. Mateos, M. Vega, R. Molina A. K. Katsaggelos, A survey of classical methods and new trends in pansharpening of multispectral images, EURASIP J. Adv. Signal Process., 79 (2011), 1–22. https://doi.org/10.1109/MGRS.2021.306346 doi: 10.1109/MGRS.2021.306346
    [2] D. Wen, X. Huang, F. Bovolo, J. Li, X. Ke, A. Zhang, et al., Change detection from very-high-spatial-resolution optical remote sensing images: Methods, applications, and future directions, IEEE Geosci. Remote Sens. Mag., 9 (2021), 68–101. https://doi.org/10.1109/MGRS.2021.3063465 doi: 10.1109/MGRS.2021.3063465
    [3] H. Yao, R. Qin, X. Chen, Unmanned aerial vehicle for remote sensing applications–-A review, Remote Sens., 11 (2019), 1443. https://doi.org/10.3390/rs11121443 doi: 10.3390/rs11121443
    [4] G. Licciardi, G. Vivone, M. D. Mura, R. Restaino, J. Chanussot, Multi-resolution analysis techniques and nonlinear PCA for hybrid pansharpening applications, Multidim. Syst. Sign. Process, 27 (2016), 807–830. https://doi.org/10.1007/s11045-015-0359-y doi: 10.1007/s11045-015-0359-y
    [5] A. Azarang, H. Ghassemian, A new pansharpening method using multi resolution analysis framework and deep neural networks, In: 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA), Shahrekord, Iran: IEEE, 2017, 1–6. https://doi.org/10.1109/PRIA.2017.7983017
    [6] S. A. Elmasry, W. A. Awad, S. A. Abd El-hafeez, Review of different image fusion techniques: Comparative study, In: Internet of Things—Applications and Future. Lecture Notes in Networks and Systems, Springer Singapore, 2020, 41–51. https://doi.org/10.1007/978-981-15-3075-3_3
    [7] L. He, Y. Rao, J. Li, J. Chanussot, A. Plaza, J. Zhu, et al., Pansharpening via detail injection based convolutional neural networks, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12 (2019), 1188–1204. https://doi.org/10.1109/JSTARS.2019.2898574 doi: 10.1109/JSTARS.2019.2898574
    [8] K. Zhang, F. Zhang, W. Wan, H. Yu, J. Sun, J. Del Ser, E. Elyan, A. Hussain, Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead, Inf. Fusion, 93 (2023), 227–242. https://doi.org/10.1016/j.inffus.2022.12.026 doi: 10.1016/j.inffus.2022.12.026
    [9] M. A. Günen, Weighted differential evolution algorithm based pansharpening, Int. J. Remote Sens., 42 (2021), 8468–8491. https://doi.org/10.1080/01431161.2021.1976874 doi: 10.1080/01431161.2021.1976874
    [10] P. Civicioglu, E. Besdok, Pansharpening of remote sensing images using dominant pixels, Expert Syst. Appl., 242 (2024), 122783. https://doi.org/10.1016/j.eswa.2023.122783 doi: 10.1016/j.eswa.2023.122783
    [11] P. Civicioglu, E. Besdok, Contrast stretching based pansharpening by using weighted differential evolution algorithm, Expert Syst. Appl., 208 (2022), 118144. https://doi.org/10.1016/j.eswa.2022.118144 doi: 10.1016/j.eswa.2022.118144
    [12] S. Yang, M. Wang, L. Jiao, Fusion of multispectral and panchromatic images based on support value transform and adaptive principal component analysis, Inf. Fusion, 13 (2012), 177–184. https://doi.org/10.1016/j.inffus.2010.09.003 doi: 10.1016/j.inffus.2010.09.003
    [13] H. R. Shahdoosti, MS and PAN image fusion by combining Brovey and wavelet methods, arXiv preprint arXiv: 170101996, 2017. https://doi.org/10.48550/arXiv.1701.01996
    [14] V. Yilmaz, C. Serifoglu Yilmaz, O. Güngör, J. Shan, A genetic algorithm solution to the gram-schmidt image fusion, Int. J. Remote Sens., 41 (2020), 1458–1485. https://doi.org/10.1080/01431161.2019.1667553 doi: 10.1080/01431161.2019.1667553
    [15] K. Amolins, Y. Zhang, P. Dare, Wavelet based image fusion techniques – An introduction, review and comparison, ISPRS J. Photogramm. Remote Sens., 62 (2007), 249–263. https://doi.org/10.1016/j.isprsjprs.2007.05.009 doi: 10.1016/j.isprsjprs.2007.05.009
    [16] G. Kaur, K. S. Saini, D. Singh, M. Kaur, A comprehensive study on computational pansharpening techniques for remote sensing images, Arch. Computat. Methods Eng., 28 (2021), 1–18. https://doi.org/10.1007/s11831-021-09565-y doi: 10.1007/s11831-021-09565-y
    [17] A. Chakraborty, A. K. Kar, Swarm intelligence: A review of algorithms, In: Nature-Inspired Computing and Optimization. Modeling and Optimization in Science and Technologies, Springer Cham, 2017,475–494. https://doi.org/10.1007/978-3-319-50920-4_19
    [18] A. E. Hassanien, E. Emary, Swarm intelligence: principles, advances, and applications, CRC Press, 2018. https://doi.org/10.1201/9781315222455
    [19] J. Kennedy, R. Eberhart, Particle swarm optimization, In: Proceedings of the IEEE International Conference on Neural Networks (ICNN'95), Perth, WA, Australia, 4 (1995), 1942–1948. http://dx.doi.org/10.1109/ICNN.1995.488968
    [20] P. Civicioglu, E. Besdok, Colony-Based Search Algorithm for numerical optimization, Appl. Soft Comput., 151 (2024), 111162. https://doi.org/10.1016/j.asoc.2023.111162 doi: 10.1016/j.asoc.2023.111162
    [21] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput.-aided Des., 43 (2011), 303–315. https://doi.org/10.1016/j.cad.2010.12.015 doi: 10.1016/j.cad.2010.12.015
    [22] Q. K. Pan, H. Y. Sang, J. H. Duan, L. Gao, An improved fruit fly optimization algorithm for continuous function optimization problems, Knowl.-Based Syst., 62 (2014), 69–83. https://doi.org/10.1016/j.knosys.2014.02.021 doi: 10.1016/j.knosys.2014.02.021
    [23] W. Y. Pan, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl.-Based Syst., 26 (2012), 69–74. https://doi.org/10.1016/j.knosys.2011.07.001 doi: 10.1016/j.knosys.2011.07.001
    [24] J. Zhang, A. C. Sanderson, Adaptive Differential Evolution: A Robust Approach to Multimodal Problem Optimization, Berlin. Heidelberg: Springer, 2009. http://dx.doi.org/10.1007/978-3-642-01527-4
    [25] S. Singh, H. Singh, G. Bueno, O. Deniz, S. Singh, H. Monga, P. N. Hrisheekesha, A. Pedraza, A review of image fusion: Methods, applications and performance metrics, Digit. Signal Process., 137 (2023), 104020. https://doi.org/10.1016/j.dsp.2023.104020 doi: 10.1016/j.dsp.2023.104020
    [26] J. G. Liu, Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details, Int. J. Remote Sens., 21 (2000), 3461–3472. https://doi.org/10.1080/014311600750037499 doi: 10.1080/014311600750037499
    [27] H. M. Palancıoğlu, Histogram modification based pansharpening by using differential evolution algorithm, Concurr. Comput.: Practic. Exp., 34 (2022), e7335. https://doi.org/10.1002/cpe.7335 doi: 10.1002/cpe.7335
    [28] M. A. Günen, U. H. Atasever, Remote sensing and monitoring of water resources: A comparative study of different indices and thresholding methods., Sci. Total Environ., 926 (2024), 172117. https://doi.org/10.1016/j.scitotenv.2024.172117 doi: 10.1016/j.scitotenv.2024.172117
    [29] M. L. Pérez-Delgado, M. A. Günen, A comparative study of evolutionary computation and swarm-based methods applied to color quantization, Expert Syst. Appl., 231 (2023), 120666. https://doi.org/10.1016/j.eswa.2023.120666 doi: 10.1016/j.eswa.2023.120666
    [30] M. L. Pérez-Delgado, M. E. Celebi, A comparative study of color quantization methods using various image quality assessment indices, Multimed. Syst., 30 (2024), 40. https://doi.org/10.1007/s00530-023-01206-7 doi: 10.1007/s00530-023-01206-7
    [31] L. Wald, Quality of high resolution synthesised images: Is there a simple criterion?, In: Third Conference: Fusion of Earth data: merging point measurements, raster maps and remotely sensed images. SEE/URISCA, Sophia Antipolis, France, 2000, 99–103.
    [32] M. A. Günen, Comparison of histogram-curve fitting-based and global threshold methods for cloud detection, Int. J. Environ. Sci. Technol., 21 (2024), 5823–5848. https://doi.org/10.1007/s13762-023-05379-6 doi: 10.1007/s13762-023-05379-6
    [33] A. Mittal, A. K. Moorthy, A. C. Bovik, Blind/referenceless image spatial quality evaluator, In: 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA: IEEE, 2011,723–727. https://doi.org/10.1109/ACSSC.2011.6190099
    [34] A. Mittal, R. Soundararajan, A. C. Bovik, Making a "completely blind" image quality analyzer, IEEE Signal Process. Lett., 20 (2012), 209–212. https://doi.org/10.1109/LSP.2012.2227726 doi: 10.1109/LSP.2012.2227726
    [35] Z. Wang, A. C. Bovik, Gradient estimates for solutions of nonlinear elliptic and parabolic equations, Switzerland: Springer Cham, 2006. https://doi.org/10.1007/978-3-031-02238-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(232) PDF downloads(43) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog