This study investigates solutions for the time-fractional coupled system of the shallow-water equations. The shallow-water equations are employed for the purpose of elucidating the dynamics of water motion in oceanic or sea environments. Also, the aforementioned system characterizes a thin fluid layer that maintains a hydrostatic equilibrium while exhibiting uniform density. Shallow water flows have a vertical dimension that is considerably smaller in magnitude than the typical horizontal dimension. In the current work, we employ an innovative and effective technique, known as the natural transform decomposition method, to obtain the solutions for these fractional systems. The present methodology entails the utilization of both singular and non-singular kernels for the purpose of handling fractional derivatives. The Banach fixed point theorem is employed to demonstrate the uniqueness and convergence of the obtained solution. The outcomes obtained from the application of the suggested methodology are compared to the exact solution and the results of other numerical methods found in the literature, including the modified homotopy analysis transform method, the residual power series method and the new iterative method. The results obtained from the proposed methodology are presented through the use of tabular and graphical simulations. The current framework effectively captures the behavior exhibited by different fractional orders. The findings illustrate the efficacy of the proposed method.
Citation: K. Pavani, K. Raghavendar. A novel method to study time fractional coupled systems of shallow water equations arising in ocean engineering[J]. AIMS Mathematics, 2024, 9(1): 542-564. doi: 10.3934/math.2024029
This study investigates solutions for the time-fractional coupled system of the shallow-water equations. The shallow-water equations are employed for the purpose of elucidating the dynamics of water motion in oceanic or sea environments. Also, the aforementioned system characterizes a thin fluid layer that maintains a hydrostatic equilibrium while exhibiting uniform density. Shallow water flows have a vertical dimension that is considerably smaller in magnitude than the typical horizontal dimension. In the current work, we employ an innovative and effective technique, known as the natural transform decomposition method, to obtain the solutions for these fractional systems. The present methodology entails the utilization of both singular and non-singular kernels for the purpose of handling fractional derivatives. The Banach fixed point theorem is employed to demonstrate the uniqueness and convergence of the obtained solution. The outcomes obtained from the application of the suggested methodology are compared to the exact solution and the results of other numerical methods found in the literature, including the modified homotopy analysis transform method, the residual power series method and the new iterative method. The results obtained from the proposed methodology are presented through the use of tabular and graphical simulations. The current framework effectively captures the behavior exhibited by different fractional orders. The findings illustrate the efficacy of the proposed method.
[1] | V. E. Tarasov, Fractional dynamics: Applications of fractional calculus to dynamics of particles, fields and media, Springer, 2011. |
[2] | R. Metzler, J. Klafter, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107–125. https://doi.org/10.1016/S0378-4371(99)00503-8 doi: 10.1016/S0378-4371(99)00503-8 |
[3] | A. Din, Y. J. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Solitons Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839 |
[4] | Q. T. Ain, A. Khan, M. I. Ullah, M. A. Alqudah, T. Abdeljawad, On fractional impulsive system for methanol detoxification in human body, Chaos Solitons Fract., 160 (2022), 112235. https://doi.org/10.1016/j.chaos.2022.112235 doi: 10.1016/j.chaos.2022.112235 |
[5] | D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705 |
[6] | H. M. Srivastava, K. M. Saad, Some new models of the time-fractional gas dynamics equation, Adv. Math. Models Appl., 3 (2018), 5–17. |
[7] | N. D. Phuong, L. V. C. Hoan, E. Karapinar, J. Singh, H. D. Binh, N. H. Can, Fractional order continuity of a time semi-linear fractional diffusion-wave system, Alex. Eng. J., 59 (2020), 4959–4968. https://doi.org/10.1016/j.aej.2020.08.054 doi: 10.1016/j.aej.2020.08.054 |
[8] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[9] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, translated from the 1987 Russian original, Yverdon: Gordon and Breach, 1993. |
[10] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[11] | Y. J. Jiang, J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), 3285–3290. https://doi.org/10.1016/j.cam.2011.01.011 doi: 10.1016/j.cam.2011.01.011 |
[12] | D. M. Gusu, D. Wegi, G. Gemechu, D. Gemechu, Fractional order Airy's type differential equations of its models using RDTM, Math. Probl. Eng., 2021 (2021), 1–21. https://doi.org/10.1155/2021/3719206 doi: 10.1155/2021/3719206 |
[13] | M. Safari, D. D. Ganji, M. Moslemi, Application of He's variational iteration method and Adomian's decomposition method to the fractional KdV-Burgers-Kuramoto equation, Comput. Math. Appl., 58 (2009), 2091–2097. https://doi.org/10.1016/j.camwa.2009.03.043 doi: 10.1016/j.camwa.2009.03.043 |
[14] | K. S. Nisar, A. Ciancio, K. K. Ali, M. S. Osman, C. Cattani, D. Baleanu, et al., On beta-time fractional biological population model with abundant solitary wave structures, Alex. Eng. J., 61 (2022), 1996–2008. https://doi.org/10.1016/j.aej.2021.06.106 doi: 10.1016/j.aej.2021.06.106 |
[15] | N. Iqbal, I. Khan, R. Shah, K. Nonlaopon, The fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator, AIMS Math., 8 (2023), 1770–1783. https://doi.org/10.3934/math.2023091 doi: 10.3934/math.2023091 |
[16] | K. S. Nisar, M. Farman, E. Hincal, A. Shehzad, Modelling and analysis of bad impact of smoking in society with constant proportional-Caputo Fabrizio operator, Chaos Solitons Fract., 172 (2023), 113549. https://doi.org/10.1016/j.chaos.2023.113549 doi: 10.1016/j.chaos.2023.113549 |
[17] | X. D. Zhang, J. P. Zhao, J. Liu, B. Tang, Homotopy perturbation method for two dimensional time-fractional wave equation, Appl. Math. Model., 38 (2014), 5545–5552. https://doi.org/10.1016/j.apm.2014.04.018 doi: 10.1016/j.apm.2014.04.018 |
[18] | L. Akinyemi, P. Veeresha, S. O. Ajibola, Numerical simulation for coupled nonlinear Schrödinger-Korteweg-de Vries and Maccari systems of equations, Mod. Phys. Lett. B, 35 (2021), 2150339. https://doi.org/10.1142/S0217984921503395 doi: 10.1142/S0217984921503395 |
[19] | N. Iqbal, M. T. Chughtai, R. Ullah, Fractional study of the non-linear Burgers' equations via a semi-analytical technique, Fractal Fract., 7 (2023), 1–17. https://doi.org/10.3390/fractalfract7020103 doi: 10.3390/fractalfract7020103 |
[20] | A. R. Seadawy, D. Kumar, A. K. Chakrabarty, Dispersive optical soliton solutions for the hyperbolic and cubic-quintic nonlinear Schrödinger equations via the extended sinh-Gordon equation expansion method, Eur. Phys. J. Plus, 133 (2018), 182. https://doi.org/10.1140/epjp/i2018-12027-9 doi: 10.1140/epjp/i2018-12027-9 |
[21] | A. R. Seadawy, N. Cheemaa, Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics, Indian J. Phys, 94 (2020), 117–126. https://doi.org/10.1007/s12648-019-01442-6 doi: 10.1007/s12648-019-01442-6 |
[22] | J. Singh, D. Kumar, D. Baleanu, S. Rathore, An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12–24. https://doi.org/10.1016/j.amc.2018.04.025 doi: 10.1016/j.amc.2018.04.025 |
[23] | M. Younis, A. R. Seadawy, I. Sikandar, M. Z. Baber, N. Ahmed, S. T. R. Rizvi, et al., Nonlinear dynamical study to time fractional Dullian-Gottwald-Holm model of shallow water waves, Int. J. Mod. Phys. B, 36 (2022), 2250004. https://doi.org/10.1142/S0217979222500047 doi: 10.1142/S0217979222500047 |
[24] | J. Wang, K. Shehzad, A. R. Seadawy, M. Arshad, F. Asmat, Dynamic study of multi-peak solitons and other wave solutions of new coupled KdV and new coupled Zakharov-Kuznetsov systems with their stability, J. Taibah Univ. Sci., 17 (2023), 2163872. https://doi.org/10.1080/16583655.2022.2163872 doi: 10.1080/16583655.2022.2163872 |
[25] | A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl., 67 (2014), 172–180. https://doi.org/10.1016/j.camwa.2013.11.001 doi: 10.1016/j.camwa.2013.11.001 |
[26] | A. R. Seadawy, S. T. R. Rizvi, S. Ahmad, M. Younis, D. Baleanu, Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation, Open Phys., 19 (2021), 1–10. https://doi.org/10.1515/phys-2020-0224 doi: 10.1515/phys-2020-0224 |
[27] | A. Zafar, A. Bekir, B. Khalid, H. Rezazadeh, Abundant solitary wave solutions for the fractional coupled Jaulent-Miodek equations arising in applied physics, Int. J. Mod. Phys. B, 34 (2020), 2050279. https://doi.org/10.1142/S0217979220502793 doi: 10.1142/S0217979220502793 |
[28] | J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 31 (2023), 2350033. https://doi.org/10.1142/S0218348X23500330 doi: 10.1142/S0218348X23500330 |
[29] | J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Solitons Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603 |
[30] | T. Ozer, Symmetry group analysis of Benney system and an application for shallow-water equations, Mech. Res. Commun., 32 (2005), 241–254. https://doi.org/10.1016/j.mechrescom.2004.10.002 doi: 10.1016/j.mechrescom.2004.10.002 |
[31] | S. Kumar, A. Kumar, Z. Odibat, M. Aldhaifallah, K. S. Nisar, A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow, AIMS Math., 5 (2020), 3035–3055. https://doi.org/10.3934/math.2020197 doi: 10.3934/math.2020197 |
[32] | S. J. Liang, J. H. Tang, M. S. Wu, Solution of shallow-water equations using least-squares finite-element method, Acta Mech. Sin., 24 (2008), 523–532. https://doi.org/10.1007/s10409-008-0151-4 doi: 10.1007/s10409-008-0151-4 |
[33] | S. Kumar, A numerical study for the solution of time fractional nonlinear shallow water equation in oceans, Z. Naturforschung A, 68 (2013), 547–553. https://doi.org/10.5560/zna.2013-0036 doi: 10.5560/zna.2013-0036 |
[34] | N. Ali, M. F. Yassen, S. A. Asiri, R. Nawaz, L. Zada, M. M. Alam, N. Sene, New iterative method for solving a coupled system of fractional-order Drinfeld-Sokolov-Wilson (FDSW) and fractional shallow water (FSW) equations, J. Nanomater, 2022 (2022), 1–13. https://doi.org/10.1155/2022/8370107 doi: 10.1155/2022/8370107 |
[35] | M. Rawashdeh, S. Maitama, Finding exact solutions of nonlinear PDEs using the natural decomposition method, Math. Methods Appl. Sci., 40 (2017), 223–236. https://doi.org/10.1002/mma.3984 doi: 10.1002/mma.3984 |
[36] | M. X. Zhou, A. S. V. R. Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, et al., Numerical solutions of time fractional Zakharov-Kuznetsov equation via natural transform decomposition method with nonsingular kernel derivatives, J. Funct. Spaces, 2021 (2021), 1–17. https://doi.org/10.1155/2021/9884027 doi: 10.1155/2021/9884027 |
[37] | A. S. V. R. Kanth, K. Aruna, K. Raghavendar, H. Rezazadeh, M. Inc, Numerical solutions of nonlinear time fractional Klein-Gordon equation via natural transform decomposition method and iterative Shehu transform method, J. Ocean Eng. Sci., 2021. https://doi.org/10.1016/j.joes.2021.12.002 doi: 10.1016/j.joes.2021.12.002 |
[38] | P. Koppala, R. Kondooru, An efficient technique to solve time-fractional Kawahara and modified Kawahara equations, Symmetry, 14 (2022), 1777. https://doi.org/10.3390/sym14091777 doi: 10.3390/sym14091777 |
[39] | K. Pavani, K. Raghavendar, Approximate solutions of time-fractional Swift-Hohenberg equation via natural transform decomposition method, Int. J. Appl. Comput. Math., 9 (2023), 29. https://doi.org/10.1007/s40819-023-01493-8 doi: 10.1007/s40819-023-01493-8 |
[40] | M. Caputo, Elasticita e dissipazione, Bologna: Zanichelli, 1969. |
[41] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92. |
[42] | A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012 |
[43] | D. G. Prakasha, P. Veeresha, M. S. Rawashdeh, Numerical solution for (2+1)‐dimensional time‐fractional coupled Burger equations using fractional natural decomposition method, Math. Methods Appl. Sci., 42 (2019), 3409–3427. https://doi.org/10.1002/mma.5533 doi: 10.1002/mma.5533 |
[44] | R. K. A. S. Venkata, A. Kirubanandam, R. Kondooru, Numerical solutions of time fractional Sawada Kotera Ito equation via natural transform decomposition method with singular and nonsingular kernel derivatives, Math. Methods Appl. Sci., 44 (2021), 14025–14040. https://doi.org/10.1002/mma.7672 doi: 10.1002/mma.7672 |
[45] | A. Khalouta, A. Kadem, A new numerical technique for solving fractional Bratu's initial value problems in the Caputo and Caputo-Fabrizio sense, J. Appl. Math. Comput. Mech., 19 (2020), 43–56. https://doi.org/10.17512/jamcm.2020.1.04 doi: 10.17512/jamcm.2020.1.04 |
[46] | A. S. V. R. Kanth, K. Aruna, K. Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers-Huxley equation, Numer. Methods Partial Differ. Equ., 39 (2023), 2690–2718. https://doi.org/10.1002/num.22983 doi: 10.1002/num.22983 |