Research article Special Issues

Existence results for nonlinear multi-term impulsive fractional $ q $-integro-difference equations with nonlocal boundary conditions

  • Received: 15 March 2023 Revised: 20 May 2023 Accepted: 04 June 2023 Published: 08 June 2023
  • MSC : 34A08, 39A13, 34B15, 34B37

  • This paper is concerned with the existence of solutions for a nonlinear multi-term impulsive fractional $ q $-integro-difference equation with nonlocal boundary conditions. The appropriated fixed point theorems are applied to accomplish the existence and uniqueness results for the given problem. We demonstrate the application of the obtained results with the aid of examples.

    Citation: Ravi P. Agarwal, Bashir Ahmad, Hana Al-Hutami, Ahmed Alsaedi. Existence results for nonlinear multi-term impulsive fractional $ q $-integro-difference equations with nonlocal boundary conditions[J]. AIMS Mathematics, 2023, 8(8): 19313-19333. doi: 10.3934/math.2023985

    Related Papers:

  • This paper is concerned with the existence of solutions for a nonlinear multi-term impulsive fractional $ q $-integro-difference equation with nonlocal boundary conditions. The appropriated fixed point theorems are applied to accomplish the existence and uniqueness results for the given problem. We demonstrate the application of the obtained results with the aid of examples.



    加载中


    [1] J. Lee, J. Kim, J. Lim, Y. Yun, Y. Kim, J. Ryu, et al., Unsteady flow of shear-thickening fluids around an impulsively moving circular cylinder, J. Non-Newton. Fluid, 272 (2019), 104163. https://doi.org/10.1016/j.jnnfm.2019.104163 doi: 10.1016/j.jnnfm.2019.104163
    [2] K. F. Chen, Q. Zhang, On the impulse response of a vibrator with a band-limited hysteretic damper, Appl. Math. Model., 35 (2011), 189–201. https://doi.org/10.1016/j.apm.2010.05.017 doi: 10.1016/j.apm.2010.05.017
    [3] I. M. Stamova, T. Stamov, N. Simeonova, Impulsive control on global exponential stability for cellular neural networks with supremums, J. Vib. Control, 19 (2013), 483–490. https://doi.org/10.1177/1077546312441042 doi: 10.1177/1077546312441042
    [4] C. He, Z. Wen, K. Huang, X. Ji, Sudden shock and stock market network structure characteristics: A comparison of past crisis events, Technol. Forecast. Soc., 180 (2022), 121732. https://doi.org/10.1016/j.techfore.2022.121732 doi: 10.1016/j.techfore.2022.121732
    [5] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, 1989. https://doi.org/10.1142/0906
    [6] T. Cardinali, P. Rubbioni, Hereditary evolution processes under impulsive effects, Mediterr. J. Math., 18 (2021), 91. https://doi.org/10.1007/s00009-021-01730-8 doi: 10.1007/s00009-021-01730-8
    [7] X. B. Rao, X. P. Zhao, Y. D. Chu, J. G. Zhang, J. S. Gao, The analysis of mode-locking topology in an SIR epidemic dynamics model with impulsive vaccination control: Infinite cascade of Stern-Brocot sum trees, Chaos Soliton. Fract., 139 (2020), 110031. https://doi.org/10.1016/j.chaos.2020.110031 doi: 10.1016/j.chaos.2020.110031
    [8] R. E. Miron, R. J. Smith, Resistance to protease inhibitors in a model of HIV-1 infection with impulsive drug effects, Bull. Math. Biol., 76 (2014), 59–97. https://doi.org/10.1007/s11538-013-9903-9 doi: 10.1007/s11538-013-9903-9
    [9] S. Deswal, S. Choudhary, Impulsive effect on an elastic solid with generalized thermodiffusion, J. Eng. Math., 63 (2009), 79–94. https://doi.org/10.1007/s10665-008-9249-8 doi: 10.1007/s10665-008-9249-8
    [10] G. Stamov, T. Stamova, C. Spirova, Impulsive reaction-diffusion delayed models in biology: Integral manifolds approach, Entropy, 23 (2021), 1631. https://doi.org/10.3390/e23121631 doi: 10.3390/e23121631
    [11] P. Savoini, M. Scholer, M. Fujimoto, Two-dimensional hybrid simulations of impulsive plasma penetration through a tangential discontinuity, J. Geophys. Res. Space, 99 (1994), 19377–19391. https://doi.org/10.1029/94JA01512 doi: 10.1029/94JA01512
    [12] B. Wang, X. Xia, Z. Cheng, L. Liu, H. Fan, An impulsive and switched system based maintenance plan optimization in building energy retrofitting project, Appl. Math. Model., 117 (2023), 479–493. https://doi.org/10.1016/j.apm.2022.12.030 doi: 10.1016/j.apm.2022.12.030
    [13] Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Phys. A, 549 (2020), 123903. https://doi.org/10.1016/j.physa.2019.123903 doi: 10.1016/j.physa.2019.123903
    [14] Y. Ding, Z. Wang, H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE T. Contr. Syst. T., 20 (2012), 763–769. https://doi.org/10.1109/TCST.2011.2153203 doi: 10.1109/TCST.2011.2153203
    [15] M. S. Ali, G. Narayanan, V. Shekher, A. Alsaedi, B. Ahmad, Global Mittag-Leffler stability analysis of impulsive fractional-order complex-valued BAM neural networks with time varying delays, Commun. Nonlinear Sci., 83 (2020), 105088. https://doi.org/10.1016/j.cnsns.2019.105088 doi: 10.1016/j.cnsns.2019.105088
    [16] X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20M132420X doi: 10.1137/20M132420X
    [17] M. Javidi, B. Ahmad, Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system, Ecol. Model., 318 (2015), 8–18. https://doi.org/10.1016/j.ecolmodel.2015.06.016 doi: 10.1016/j.ecolmodel.2015.06.016
    [18] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [19] B. Ahmad, S. K. Ntouyas, Nonlocal nonlinear fractional-order boundary value problems, Singapore: World Scientific, 2021. https://doi.org/10.1142/12102
    [20] H. Alsulami, M. Kirane, S. Alhodily, T. Saeed, N. Nyamoradi, Existence and multiplicity of solutions to fractional $p$-Laplacian systems with concave-convex nonlinearities, Bull. Math. Sci., 10 (2020), 2050007. https://doi.org/10.1142/S1664360720500071 doi: 10.1142/S1664360720500071
    [21] A. Ebrahimzadeh, R. Khanduzi, A. Beik, P. Samaneh, D. Baleanu, Research on a collocation approach and three metaheuristic techniques based on MVO, MFO, and WOA for optimal control of fractional differential equation, J. Vib. Control, 29 (2023), 661–674. https://doi.org/10.1177/10775463211051447 doi: 10.1177/10775463211051447
    [22] R. Agarwal, S. Hristova, D. O'Regan, Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives, AIMS Math., 7 (2022), 2973–2988. https://doi.org/10.3934/math.2022164 doi: 10.3934/math.2022164
    [23] J. J. Nieto, Fractional Euler numbers and generalized proportional fractional logistic differential equation, Fract. Calc. Appl. Anal., 25 (2022), 876–886. https://doi.org/10.1007/s13540-022-00044-0 doi: 10.1007/s13540-022-00044-0
    [24] K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335. https://doi.org/10.1016/j.chaos.2021.111335 doi: 10.1016/j.chaos.2021.111335
    [25] C. Kiataramkul, S. K. Ntouyas, J. Tariboon, Existence results for $\psi $-Hilfer fractional integro-differential hybrid boundary value problems for differential equations and inclusions, Adv. Math. Phys., 2021 (2021), 9044313. https://doi.org/10.1155/2021/9044313 doi: 10.1155/2021/9044313
    [26] Z. Laadjal, F. Jarad, Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions, AIMS Math., 8 (2023), 1172–1194. https://doi.org/10.3934/math.2023059 doi: 10.3934/math.2023059
    [27] J. R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional $q$-derivatives, Appl. Math. Comput., 218 (2012), 9682–9689. https://doi.org/10.1016/j.amc.2012.03.006 doi: 10.1016/j.amc.2012.03.006
    [28] B. Ahmad, S. K. Ntouyas, J. Tariboon, Quantum calculus: New concepts, impulsive IVPs and BVPs, inequalities, World Scientific, 2016. https://doi.org/10.1142/10075
    [29] M. Jiang, R. Huang, Existence of solutions for $q$-fractional differential equations with nonlocal Erdélyi-Kober $q$-fractional integral condition, AIMS Math., 5 (2020), 6537–6551. https://doi.org/10.3934/math.2020421 doi: 10.3934/math.2020421
    [30] S. Liang, M. E. Samei, New approach to solutions of a class of singular fractional $q$-differential problem via quantum calculus, Adv. Differ. Equ., 2020 (2020), 14. https://doi.org/10.1186/s13662-019-2489-2 doi: 10.1186/s13662-019-2489-2
    [31] C. Bai, D. Yang, The iterative positive solution for a system of fractional $q$-difference equations with four-point boundary conditions, Discrete Dyn. Nat. Soc., 2020 (2020), 3970903. https://doi.org/10.1155/2020/3970903 doi: 10.1155/2020/3970903
    [32] A. Wongcharoen, A. Thatsatian, S. K. Ntouyas, J. Tariboon, Nonlinear fractional $q$-difference equation with fractional Hadamard and quantum integral nonlocal conditions, J. Funct. Space., 2020 (2020), 9831752. https://doi.org/10.1155/2020/9831752 doi: 10.1155/2020/9831752
    [33] A. Alsaedi, H. Al-Hutami, B. Ahmad, R. P. Agarwal, Existence results for a coupled system of nonlinear fractional $q$-integro-difference equations with $q$-integral coupled boundary conditions, Fractals, 30 (2022), 2240042. https://doi.org/10.1142/S0218348X22400424 doi: 10.1142/S0218348X22400424
    [34] W. Yukunthorn, B. Ahmad, S. K. Ntouyas, J. Tariboon, On Caputo-Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal. Hybri., 19 (2016), 77–92. https://doi.org/10.1016/j.nahs.2015.08.001 doi: 10.1016/j.nahs.2015.08.001
    [35] B. Ahmad, S. K. Ntouyas, J. Tariboon, A. Alsaedi, H. H. Alsulami, Impulsive fractional $q$-integro-difference equations with separated boundary conditions, Appl. Math. Comput., 281 (2016), 199–213. https://doi.org/10.1016/j.amc.2016.01.051 doi: 10.1016/j.amc.2016.01.051
    [36] S. Abbas, M. Benchohra, A. Alsaedi, Y. Zhou, Some stability concepts for abstract fractional differential equations with not instantaneous impulses, Fixed Point Theor., 18 (2017), 3–16. https://doi.org/10.24193/fpt-ro.2017.1.01 doi: 10.24193/fpt-ro.2017.1.01
    [37] D. Vivek, K. Kanagarajan, S. Harikrishnan, Existence of solutions for impulsive fractional $q$-difference equations with nonlocal condition, J. Appl. Nonlinear Dyn., 6 (2017), 479–486. https://doi.org/10.5890/JAND.2017.12.004 doi: 10.5890/JAND.2017.12.004
    [38] M. Zuo, X. Hao, Existence results for impulsive fractional $q$-difference equation with antiperiodic boundary conditions, J. Funct. Space., 2018 (2018), 3798342. https://doi.org/10.1155/2018/3798342 doi: 10.1155/2018/3798342
    [39] R. P. Agarwal, S. Hristova, D. O'Regan, Exact solutions of linear Riemann-Liouville fractional differential equations with impulses, Rocky Mountain J. Math., 50 (2020), 779–791. https://doi.org/10.1216/rmj.2020.50.779 doi: 10.1216/rmj.2020.50.779
    [40] M. H. Annaby, Z. S. Mansour, $q$-Fractional calculus and equations, Berlin: Springer-Verlag, 2012. https://doi.org/10.1007/978-3-642-30898-7
    [41] P. M. Rajkovic, S. D. Marinkovic, M. S. Stankovic, On $q$-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10 (2007), 359–373.
    [42] H. Schaefer, Über die Methode der a priori-Schranken, Math. Ann., 129 (1955), 415–416.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1153) PDF downloads(60) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog