Research article

Iterative schemes for numerical reckoning of fixed points of new nonexpansive mappings with an application

  • Received: 13 December 2022 Revised: 12 February 2023 Accepted: 16 February 2023 Published: 03 March 2023
  • MSC : 47H09, 47H10

  • The goal of this manuscript is to introduce a new class of generalized nonexpansive operators, called $ (\alpha, \beta, \gamma) $-nonexpansive mappings. Furthermore, some related properties of these mappings are investigated in a general Banach space. Moreover, the proposed operators utilized in the $ K $-iterative technique estimate the fixed point and examine its behavior. Also, two examples are provided to support our main results. The numerical results clearly show that the $ K $-iterative approach converges more quickly when used with this new class of operators. Ultimately, we used the $ K $-type iterative method to solve a variational inequality problem on a Hilbert space.

    Citation: Kifayat Ullah, Junaid Ahmad, Hasanen A. Hammad, Reny George. Iterative schemes for numerical reckoning of fixed points of new nonexpansive mappings with an application[J]. AIMS Mathematics, 2023, 8(5): 10711-10727. doi: 10.3934/math.2023543

    Related Papers:

  • The goal of this manuscript is to introduce a new class of generalized nonexpansive operators, called $ (\alpha, \beta, \gamma) $-nonexpansive mappings. Furthermore, some related properties of these mappings are investigated in a general Banach space. Moreover, the proposed operators utilized in the $ K $-iterative technique estimate the fixed point and examine its behavior. Also, two examples are provided to support our main results. The numerical results clearly show that the $ K $-iterative approach converges more quickly when used with this new class of operators. Ultimately, we used the $ K $-type iterative method to solve a variational inequality problem on a Hilbert space.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133–181. https://cir.nii.ac.jp/crid/1570572700413342720
    [2] D. R. Sahu, D. O'Regan, R. P. Agarwal, Fixed point theory for Lipschitzian-type mappings with applications series, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-75818-3
    [3] W. Takahashi, Nonlinear functional analysis, Yokohoma: Yokohoma Publishers, 2000.
    [4] H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled-fractional differential equations, Aims Math., 6 (2021), 2330–2343. https://doi:10.3934/math.2021141 doi: 10.3934/math.2021141
    [5] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [6] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry and nonexpansive mappings, New York: Marcel Dekkae, 1984.
    [7] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, P. Natl. A. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [8] D. Gohde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312
    [9] W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
    [10] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630
    [11] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https: file: ///C: /Users/Hp/Downloads/1183528964.pdf
    [12] H. F. Senter, W. G. Dotson, Approximating fixed points of non-expansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.2307/2040440 doi: 10.2307/2040440
    [13] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, B. Aust. Math. Soc., 43 (1991), 153–159. https://doi:10.1017/S0004972700028884 doi: 10.1017/S0004972700028884
    [14] X. Zhang, L. Dai, Image enhancement based on rough set and fractional order differentiator, Fractal Fract., 6 (2022), 214. https://doi.org/10.3390/fractalfract6040214 doi: 10.3390/fractalfract6040214
    [15] J. X. Zhang, G. H. Yang, Fault-tolerant output-constrained control of unknown Euler-Lagrange systems with prescribed tracking accuracy, Automatica, 111 (2020), 108606. https://doi.org/10.1016/j.automatica.2019.108606 doi: 10.1016/j.automatica.2019.108606
    [16] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510.
    [17] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.2307/2039245 doi: 10.2307/2039245
    [18] M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042
    [19] R. P. Agarwal, D. O'Regon, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex A., 8 (2007), 61–79.
    [20] M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vestn., 66 (2014), 223–234.
    [21] B. S. Thakur, D. Thakur, M. Postolache, New iteration scheme for approximating fixed point of nonexpansive mappings, Filomat, 30 (2016), 2711–2720. https://doi.org/10.2298/FIL1610711T doi: 10.2298/FIL1610711T
    [22] N. Hussain, K. Ullah, M. Arshad, Fixed point approximation of Suzuki generalized non-expansive mappings via new faster iteration process, J. Nonlinear Convex A., 19 (2018), 1383–1393. https://doi.org/10.48550/arXiv.1802.09888 doi: 10.48550/arXiv.1802.09888
    [23] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [24] F. Facchinei, J. S. Pang, Finite-dimensional variational inequalities and complementarity problems, New York: Springer, 2003.
    [25] I. Konnov, Combined relaxation methods for variational inequalities, Berlin: Springer-Verlag, 2001.
    [26] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [27] C. Martinez-Yanes, H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. Theor., 64 (2006), 2400–2411. https://doi.org/10.1016/j.na.2005.08.018 doi: 10.1016/j.na.2005.08.018
    [28] H. A. Hammad, H. U. Rahman, M. De la Sen, Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl. Eng., 2020 (2020), 7487383. https://doi.org/10.1155/2020/7487383 doi: 10.1155/2020/7487383
    [29] T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and $CQ$-methods on two inertial forward–backward algorithms for solving variational inclusion problems, Rend. Circ. Mat. Palerm. Ser. Ⅱ, 70 (2021), 1669–1683. https://doi.org/10.1007/s12215-020-00581-8 doi: 10.1007/s12215-020-00581-8
    [30] H. A. Hammad, W. Cholamjiak, D. Yambangwai, H. Dutta, A modified shrinking projection methods for numerical reckoning fixed points of $G$-nonexpansive mappings in Hilbert spaces with graph, Miskolc Math. Notes, 20 (2019), 941–956. https://doi.org/10.18514/MMN.2019.2954 doi: 10.18514/MMN.2019.2954
    [31] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, New York: Springer, 2011. https://doi.org/10.1007/978-1-4419-9467-7
    [32] H. H. Bauschke, J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev., 38 (1096), 367–426. https://doi.org/10.1137/S0036144593251710 doi: 10.1137/S0036144593251710
    [33] P. Chen, J. Huang, X. Zhang, A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration, Inverse Probl., 29 (2013), 025011. https://doi.org/10.1088/0266-5611/29/2/025011 doi: 10.1088/0266-5611/29/2/025011
    [34] Y. Dang, J. Sun, H. Xu, Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13 (2017), 1383-1394. https://doi.org/10.3934/jimo.2016078 doi: 10.3934/jimo.2016078
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1352) PDF downloads(90) Cited by(1)

Article outline

Figures and Tables

Figures(1)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog