Research article Special Issues

Euler's totient function applied to complete hypergroups

  • Received: 17 October 2022 Revised: 10 January 2023 Accepted: 12 January 2023 Published: 18 January 2023
  • MSC : 11A25, 20N20

  • We study the Euler's totient function (called also the Euler's phi function) in the framework of finite complete hypergroups. These are algebraic hypercompositional structures constructed with the help of groups, and endowed with a multivalued operation, called hyperoperation. On them the Euler's phi function is multiplicative and not injective. In the second part of the article we find a relationship between the subhypergroups of a complete hypergroup and the subgroups of the group involved in the construction of the considered complete hypergroup. As sample application of this connection, we state a formula that relates the Euler's totient function defined on a complete hypergroup to the same function applied to its subhypergroups.

    Citation: Andromeda Sonea, Irina Cristea. Euler's totient function applied to complete hypergroups[J]. AIMS Mathematics, 2023, 8(4): 7731-7746. doi: 10.3934/math.2023388

    Related Papers:

  • We study the Euler's totient function (called also the Euler's phi function) in the framework of finite complete hypergroups. These are algebraic hypercompositional structures constructed with the help of groups, and endowed with a multivalued operation, called hyperoperation. On them the Euler's phi function is multiplicative and not injective. In the second part of the article we find a relationship between the subhypergroups of a complete hypergroup and the subgroups of the group involved in the construction of the considered complete hypergroup. As sample application of this connection, we state a formula that relates the Euler's totient function defined on a complete hypergroup to the same function applied to its subhypergroups.



    加载中


    [1] M. Tărnăuceanu, A generalization of the Euler's totient function, Assian Europ. J. Math., 884 (2015), 1550087.
    [2] J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972), 165–179.
    [3] K. Kuhlmann, A. Linzi, H. Stojalowska, Orderings and valuations in hyperfields, J. Algebra, 611 (2022), 399–421. https://doi.org/10.1016/j.jalgebra.2022.08.006 doi: 10.1016/j.jalgebra.2022.08.006
    [4] A. Linzi, H. Stojałowska, Hypervaluations on hyperfields and ordered canonical hypergroups, Iran. J. Math. Sci. Inf., In press.
    [5] P. Bonansinga, Quasicanonical hypergroups, Atti Soc. Peloritana Sci. Fis. Mat. Natur., 27 (1981), 9–17.
    [6] S. D. Comer, Polygroups derived from cogroups, J. Algebra, 89 (1984), 397–405.
    [7] F. Arabpur, M. Jafarpour, M. Aminizadeh, S. Hoskova-Mayerova, On geometric polygroups, An. St. Univ. Ovidius Constanta Ser. Mat., 28 (2020). https: //doi.org/17-33.10.2478/auom-2020-0002
    [8] O. Kazanci, S. Hoskova-Mayerova, B. Davvaz, Algebraic hyperstructure of multi-fuzzy soft sets related to polygroups, Mathematics, 10 (2022), 2178. https://doi.org/10.3390/math10132178 doi: 10.3390/math10132178
    [9] N. Yaqoob, I. Cristea, M. Gulistan, S. Nawaz, Left almost polygroups, It. J. Pure Appl. Math., 39 (2018), 465–474.
    [10] A. Sonea, B. Davvaz, The Euler's totient function in canonical hypergroups, Indian J. Pure Appl. Math., 53 (2022), 683–695. https://doi.org/10.1007/s13226-021-00159-9 doi: 10.1007/s13226-021-00159-9
    [11] P. Corsini, Hypergroupes d'associativite des quasigroupes mediaux, Atti del Convegno su Sistemi Binari e loro Applicazioni, 1978.
    [12] P. Corsini, G. Romeo, Hypergroupes complets et T-groupoids, Atti del Convegno su Sistemi Binari e loro Applicazioni, 1978.
    [13] P. Corsini, Prolegomena of Hypergroup Theory, Tricesimo: Aviani Editore, 1993.
    [14] P. Corsini, V. Leoreanu, Applications of Hyperstructures Theory, New York: Springer, 2003. https://doi.org/10.1007/978-1-4757-3714-1
    [15] I. Cristea, Complete hypergroups, 1-hypergroups and fuzzy sets, An. St. Univ. Ovidius Constanţa Sr. Mat., 10 (2002), 25–38.
    [16] C. Massouros, G. Massouros, An overview of the foundations of the hypergroup theory, Mathematics, 9 (2021), 1014. https://doi.org/10.3390/math9091014 doi: 10.3390/math9091014
    [17] G. Massouros, C. Massouros, Hypercompositional algebra, computer science and geometry, Mathematics, 8 (2020), 1338. https://doi.org/10.3390/MATH8081338 doi: 10.3390/MATH8081338
    [18] V. Leoreanu-Fotea, P. Corsini, A. Sonea, D. Heidari, Complete parts and subhypergroups in reversible regular hypergroups, An. St. Univ. Ovidius Constanta Ser. Mat., 30 (2022), 219–230. https://doi.org/219-230.0.2478/auom-2022-0012
    [19] C. Angheluta, I. Cristea, Fuzzy grade of the complete hypergroups, Iran. J. Fuzzy Syst., 9 (2012), 43–56. https://doi.org/10.22111/ijfs.2012.112 doi: 10.22111/ijfs.2012.112
    [20] T. N. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Univ. Carol. Math. Phys., 22 (1981), 3–6.
    [21] M. Novák, Š. Křehlíc, I. Cristea, Cyclicity in EL-Hypergroups, Symmetry, 10 (2018), 611. https://doi.org/10.3390/sym10110611 doi: 10.3390/sym10110611
    [22] A. Sonea, I. Cristea, The class equation and the commutativity degree for complete hypergroups, Mathematics, 8 (2020), 2253. https://doi.org/10.3390/math8122253 doi: 10.3390/math8122253
    [23] M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, Commutativity and completeness degrees of weakly complete hypergroups, Mathematics, 10 (2022), 981. https://doi.org/10.3390/math10060981 doi: 10.3390/math10060981
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1658) PDF downloads(182) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog