Research article Special Issues

A neural network for solving the generalized inverse mixed variational inequality problem in Hilbert Spaces

  • Received: 29 September 2022 Revised: 05 December 2022 Accepted: 06 December 2022 Published: 12 January 2023
  • MSC : 49J40, 65P40

  • In this paper, we study and analyze the generalized inverse mixed variational inequality. The existence and uniqueness of the solution of such problem are proposed. The neural network associated with the generalized inverse mixed variational inequality is presented, and moreover, the Wiener-Hopf equation which the solution of the equation is equivalent to the solution of the generalized inverse mixed variational inequality, is considered. The stability and existence of solution of such neural network are proved. Finally, we introduce some algorithms which are constructed by the concept of the neural network and display a numerical example for understanding our results.

    Citation: Jittiporn Tangkhawiwetkul. A neural network for solving the generalized inverse mixed variational inequality problem in Hilbert Spaces[J]. AIMS Mathematics, 2023, 8(3): 7258-7276. doi: 10.3934/math.2023365

    Related Papers:

  • In this paper, we study and analyze the generalized inverse mixed variational inequality. The existence and uniqueness of the solution of such problem are proposed. The neural network associated with the generalized inverse mixed variational inequality is presented, and moreover, the Wiener-Hopf equation which the solution of the equation is equivalent to the solution of the generalized inverse mixed variational inequality, is considered. The stability and existence of solution of such neural network are proved. Finally, we introduce some algorithms which are constructed by the concept of the neural network and display a numerical example for understanding our results.



    加载中


    [1] V. Barbu, P. Neittaanmaki, A. Niemisto, Approximating optimal control problems governed by variational inequalities, Numer. Func. Anal. Opt., 15 (1994), 489–502. https://doi.org/10.1080/01630569408816577 doi: 10.1080/01630569408816577
    [2] F. E. Browder, On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc. N. A. S., 56 (1966), 419–425. https://doi.org/10.1073/pnas.56.2.419 doi: 10.1073/pnas.56.2.419
    [3] J. W. Chen, X. X. Ju, E. Kobis, Y. C. Liou, Tikhonov type regularization methods for inverse mixed variational inequalities, Optimization, 69 (2020), 403–413. http://doi.org/10.1080/02331934.2019.1607339 doi: 10.1080/02331934.2019.1607339
    [4] F. Facchinei, J. S. Pang, Finite dimensional variational inequalities and complementarity problems, New York: Springer, 2003.
    [5] Z. S. Guo, Q. S. Liu, J. Wang, A one-layer recurrent neural network for pseudoconvex optimization with linear equality constraints, IEEE T. Neural Networ., 22 (2011), 1892–1900.
    [6] D. Z. Hu, X. He, X. X. Ju, A modified projection neural network with fixed-time convergence, Neurocomputing, 489 (2022), 90–97. https://doi.org/10.1016/j.neucom.2022.03.023 doi: 10.1016/j.neucom.2022.03.023
    [7] B. S. He, X. Z. He, H. X. Liu, Sloving a class of constrained "blak-box" inverse vaiational inequalities, Eur. J. Oper. Res., 204 (2010), 391–401.
    [8] B. S. He, H. X. Liu, Inverse variational inequalities in the economic field: Applications and algorithms, 2006. Available from: http://www.paper.edu.cn/releasepaper/content/200609-260.
    [9] T. T. Ha Nguyen, J. Strodiot Jean, T. Vuong Phan, On the global exponential stability of a projected dynamical system for strongly pseudomonotone variational inequlities, Optim. Lett., 12 (2018), 1625–1638.
    [10] X. Ju, D. Hu, C. Li, X. He, G. Feng, A novel fixed-time converging neurodynamic approach to mixed variational inequalities and applications, IEEE T. Cybernetics, 52 (2022), 12942–12953.
    [11] X. X. Ju, C. D. Li, H. J. Che, X. He, G. Feng, A proximal neurodynamic network with fixed-time convergence for equilibrium problems and its applications, IEEE T. Neur. Net. Lear., 2022. https://doi.org/10.1109/TNNLS.2022.3144148
    [12] X. X. Ju, C. D. Li, X. He, G. Feng, A proximal neurodynamic model for solving inverse mixed variational inequalities, Neural Networks, 138 (2021), 1–9. https://doi.org/10.1016/j.neunet.2021.01.012 doi: 10.1016/j.neunet.2021.01.012
    [13] H. Kunze, D. La Torre, F. Mendivil, M. Ruiz Galen, Z. Rachad, Fractalbased methods and inverse problems for differential equations: Current state of the art, Math. Probl. Eng., 2014 (2014), 737694.
    [14] H. Kunze, D. La Torre, K. Levere, M. Ruiz Galan, Inverse problems via the "generalized collage theorem" for vector-valued lax-milgram-based variational problems, Math. Probl. Eng., 2015 (2015), 764643. https://doi.org/10.1155/2015/764643 doi: 10.1155/2015/764643
    [15] H. Kunze, D. La Torre, Solving inverse problems for steady-state equations using a multiple criteria model with collage distance, entropy and sparsity, Ann. Oper. Res., 311 (2022), 1051–1065.
    [16] I. V.Konnov, E. O. Volotskaya, Mixed variational inequalities and economic equilibrium problems, J. Appl. Math., 2 (2002), 734309.
    [17] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Philadelphia: SIAM, 1980.
    [18] Q. S. Liu, C. Y. Dang, T. W. Huang, A one-layer recurrent neural network for real-time portfolio optimization with probability criterion, IEEE T. Cybernetics, 43 (2013), 14–23.
    [19] C. Lescarret, Csa d'addition des applications monotones maximales dans un espace de Hilbert, C. R. Seances Acad. Sci., 261 (1965), 1160–1163.
    [20] X. Li, X. S. Li, N. J. Huang, A generalized $f$-projection algorithm for inverse mixed variational inequalities, Optim. Lett., 8 (2014), 1063–1076. https://doi.org/10.1007/s11590-013-0635-4 doi: 10.1007/s11590-013-0635-4
    [21] J. L. Lion, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302
    [22] Q. Liu, J. Wang, Finite-time convergent recurrent neural network with a hardlimiting activation function for constrained optimization with piecewise-linear objective functions, IEEE T. Neural Networ., 22 (2011), 601–613.
    [23] X. Li, Y. Z. Zou, Existence result and error bounds for a new class of inverse mixed quasi variational inequalities, J. Inequal. Appl., 2016 (2016), 42. http://doi.org/10.1186/s13660-016-0968-5 doi: 10.1186/s13660-016-0968-5
    [24] T. D. Ma, Synchronization of multi-agent stochastic impulsive pertubed chaotic delayed neural networks with switching topology, Neurocomputing, 151 (2015), 1392–1406.
    [25] R. K. Miller, A. N. Michel, Ordinary differential equations, New York: Academic Press, 1982.
    [26] M. A. Noor, K. I. Noor, A. G. Khan, Dynamical systems for quasi variational inequalities, Ann. Funct. Anal., 6 (2015), 193–209. http://doi.org/10.15352/afa/06-1-14 doi: 10.15352/afa/06-1-14
    [27] A. Nazemi, A. Sabeghi, A new neural network framework for solving convex second-order cone constrained variational inequality problems with an application in multi-finger robot hands, J. Exp. Theor. Artif. In., 32 (2020), 181–203. https://doi.org/10.1080/0952813X.2019.1647559 doi: 10.1080/0952813X.2019.1647559
    [28] A. Nagurney, A. D. Zhang, Projected dynamical systems and variational inequalities with applications, Boston: Kluwer Academic, 1996.
    [29] G. Scutari, D. P. Palomar, F. Facchinei, J. S. Pang, Convex optimazation, game theory and variation inequality theory, IEEE Signal Proc. Mag., 27 (2010), 35–49.
    [30] N. Petrot, J. Tangkhawiwetkul, Equilibrium point of a supply chain network comprising disaster relief model via variational inequality problem, J. Nonlinear Anal. Optim.: Theory Appl., 13 (2022), 85–107.
    [31] P. T. Vuong, X. He, D. V. Thong, Global exponential stability of a neural network for inverse variational inequalities, J. Optim. Theory Appl., 190 (2021), 915–930. https://doi.org/10.1007/s10957-021-01915-x doi: 10.1007/s10957-021-01915-x
    [32] K. Q. Wu, N. J. Huang, The generalised $f$-projection operator with an application, Bull. Austral. Math. Soc., 73 (2006), 307–317.
    [33] Y. S. Xia, G. Feng, M. Kamel, Development and analysis of a neural dynamical approach to nonlinear programming problems, IEEE T. Automat. Contr., 52 (2007), 2154–2159. https://doi.org/10.1109/TAC.2007.908342 doi: 10.1109/TAC.2007.908342
    [34] Y. S. Xia, H. Leung, J. Wang, A projection neural network and its application to constrained optimization problems, IEEE T. Circuits I, 49 (2002), 447–458.
    [35] J. F. Yang, Dynamic power price problem: An inverse variational inequality approach, J. Ind. Manag. Optim., 4 (2008), 673–684. https://doi.org/10.3934/jimo.2008.4.673 doi: 10.3934/jimo.2008.4.673
    [36] J. Yang, X. He, T. W. Huang, Neurodynamic approaches for sparse recovery problem with linear inequality constraints, Neural Networks, 155 (2022), 592–601. https://doi.org/10.1016/j.neunet.2022.09.013 doi: 10.1016/j.neunet.2022.09.013
    [37] X. J. Zou, D. W. Gong, L. P. Wang, Z. Y. Chen, A novel method to solve inverse variational inequality problems based on neural networks, Neurocomputing, 173 (2015), 1163–1168. https://doi.org/10.1016/j.neucom.2015.08.073 doi: 10.1016/j.neucom.2015.08.073
    [38] H. G. Zhang, B. N. Huang, D. W. Gong, Z. S. Wang, New results for neural type delayed projection neural network to solve linear variational inequalities, Neural Comput. Applic., 23 (2013), 1753–1761. https://doi.org/10.1007/s00521-012-1141-9 doi: 10.1007/s00521-012-1141-9
    [39] H. G. Zhang, Z. W. Liu, G. B. Huang, Z. Wang, Novel weighting-delay-based stability criteria for recurrent neural networks with time-varying delay, IEEE T. Neural Networ., 21 (2010), 91–106.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1461) PDF downloads(85) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog