Research article

Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control

  • Received: 21 October 2022 Revised: 27 November 2022 Accepted: 04 December 2022 Published: 19 December 2022
  • MSC : 34D06, 92B20, 93C27

  • This paper investigates the lag synchronization problem of complex-valued interval neural networks with both discrete and distributed time-varying delays under delayed impulsive control. A distributed delayed impulsive controller that depends on the accumulation of the states over a history time period is designed to guarantee the exponential lag synchronization between the drive and the response systems. By employing the complex Lyapunov method and a novel impulsive differential inequality technique, some delay-dependent synchronization criteria are established in terms of complex-valued linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.

    Citation: Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li. Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control[J]. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277

    Related Papers:

  • This paper investigates the lag synchronization problem of complex-valued interval neural networks with both discrete and distributed time-varying delays under delayed impulsive control. A distributed delayed impulsive controller that depends on the accumulation of the states over a history time period is designed to guarantee the exponential lag synchronization between the drive and the response systems. By employing the complex Lyapunov method and a novel impulsive differential inequality technique, some delay-dependent synchronization criteria are established in terms of complex-valued linear matrix inequalities (LMIs). Finally, a numerical example is given to illustrate the effectiveness of the theoretical results.



    加载中


    [1] L. O. Chua, L. Yang, Cellular neural networks: Applications, IEEE Trans. Circ. Syst., 35 (1988), 1273–1290. http://dx.doi.org/10.1109/31.7601 doi: 10.1109/31.7601
    [2] J. Hu, G. Sui, X. Lv, X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Anal.-Model., 23 (2018), 904–920. http://dx.doi.org/10.15388/NA.2018.6.6 doi: 10.15388/NA.2018.6.6
    [3] G. Stamov, E. Gospodinova, I. Stamova, Practical exponential stability with respect to h-manifolds of discontinuous delayed cohen-grossberg neural networks with variable impulsive perturbations, Math. Model. Control, 1 (2021), 26–34. http://dx.doi.org/10.3934/mmc.2021003 doi: 10.3934/mmc.2021003
    [4] M. Ceylan, R. Ceylan, Y. Özbay, S. Kara, Application of complex discrete wavelet transform in classification of doppler signals using complex-valued artificial neural network, Artif. Intell. Med., 44 (2008), 65–76. http://dx.doi.org/10.1016/j.artmed.2008.05.003 doi: 10.1016/j.artmed.2008.05.003
    [5] A. Hirose, Complex-valued neural networks. Springer Science & Business Media, 2012. http://doi.org/10.1007/978-3-642-27632-3
    [6] M. E. Valle, Complex-valued recurrent correlation neural networks, IEEE Trans. Neural Netw. Learn. Syst., 25 (2014), 1600–1612. http://dx.doi.org/10.1109/TNNLS.2014.2341013 doi: 10.1109/TNNLS.2014.2341013
    [7] X. Li, X. Yang, S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135–140. http://dx.doi.org/10.1016/j.automatica.2019.01.031 doi: 10.1016/j.automatica.2019.01.031
    [8] X. Liu, S. Zhong, Stability analysis of delayed switched cascade nonlinear systems with uniform switching signals, Math. Model. Control, 1 (2021), 90–101. http://dx.doi.org/10.3934/mmc.2021007 doi: 10.3934/mmc.2021007
    [9] Q. Song, Q. Yu, Z. Zhao, Y. Liu, F. E. Alsaadi, Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties, Neural Netw., 103 (2018), 55–62. http://doi.org/10.1016/j.neunet.2018.03.008 doi: 10.1016/j.neunet.2018.03.008
    [10] M. Liu, Z. Li, H. Jiang, C. Hu, Z. Yu, Exponential synchronization of complex-valued neural networks via average impulsive interval strategy, Neural Process. Lett., 52 (2020), 1377–1394. http://doi.org/10.1007/s11063-020-10309-5 doi: 10.1007/s11063-020-10309-5
    [11] W. Zhang, X. Yang, C. Xu, J. Feng, C. Li, Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 3761–3771. http://doi.org/10.1109/TNNLS.2017.2740431 doi: 10.1109/TNNLS.2017.2740431
    [12] J. Cao, L. Li, Cluster synchronization in an array of hybrid coupled neural networks with delay, Neural Netw., 22 (2009), 335–342. http://doi.org/10.1016/j.neunet.2009.03.006 doi: 10.1016/j.neunet.2009.03.006
    [13] R. Kumar, S. Sarkar, S. Das, J. Cao, Projective synchronization of delayed neural networks with mismatched parameters and impulsive effects, IEEE Trans. Neural Netw. Learn. Syst., 31 (2020), 1211–1221. http://doi.org/10.1109/TNNLS.2019.2919560 doi: 10.1109/TNNLS.2019.2919560
    [14] Y. Yang, J. Cao, Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects, Physica A., 386 (2007), 492–502. http://doi.org/10.1016/j.physa.2007.07.049 doi: 10.1016/j.physa.2007.07.049
    [15] L. Wang, Y. Shen, G. Zhang, Synchronization of a class of switched neural networks with time-varying delays via nonlinear feedback control, IEEE Trans. Cybern., 46 (2016), 2300–2310. http://doi.org/10.1109/TCYB.2015.2475277 doi: 10.1109/TCYB.2015.2475277
    [16] H. Ren, Z. Peng, Y. Gu, Fixed-time synchronization of stochastic memristor-based neural networks with adaptive control, Neural Netw., 130 (2020), 165–175. http://doi.org/10.1016/j.neunet.2020.07.002 doi: 10.1016/j.neunet.2020.07.002
    [17] G. Zhang, X. Lin, X. Zhang, Exponential stabilization of neutral-type neural networks with mixed interval time-varying delays by intermittent control: a ccl approach, Circ. Syst. Signal Pr., 33 (2014), 371–391. http://doi.org/10.1007/s00034-013-9651-y doi: 10.1007/s00034-013-9651-y
    [18] X. Li, S. Song, Research on synchronization of chaotic delayed neural networks with stochastic perturbation using impulsive control method, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 3892–3900. http://dx.doi.org/10.1016/j.cnsns.2013.12.012 doi: 10.1016/j.cnsns.2013.12.012
    [19] Q. Tang, J. Jian, Matrix measure based exponential stabilization for complex-valued inertial neural networks with time-varying delays using impulsive control, Neurocomputing, 273 (2018), 251–259. http://dx.doi.org/10.1016/j.neucom.2017.08.009 doi: 10.1016/j.neucom.2017.08.009
    [20] X. Li, X. Yang, J. Cao, Event-triggered impulsive control for nonlinear delay systems, Automatica, 117 (2020), 108981. http://doi.org/10.1016/j.automatica.2020.108981 doi: 10.1016/j.automatica.2020.108981
    [21] X. Li, J. Fang, H. Li, Master–slave exponential synchronization of delayed complex-valued memristor-based neural networks via impulsive control, Neural Netw., 93 (2017), 165–175. http://dx.doi.org/10.1016/j.neunet.2017.05.008 doi: 10.1016/j.neunet.2017.05.008
    [22] Y. Kan, J. Lu, J. Qiu, J. Kurths, Exponential synchronization of time-varying delayed complex-valued neural networks under hybrid impulsive controllers, Neural Netw., 114 (2019), 157–163. https://doi.org/10.1016/j.neunet.2019.02.006 doi: 10.1016/j.neunet.2019.02.006
    [23] L. Li and G. Mu, Synchronization of coupled complex-valued impulsive neural networks with time delays, Neural Process. Lett., 50 (2019), 2515–2527. http://doi.org/10.1007/s11063-019-10028-6 doi: 10.1007/s11063-019-10028-6
    [24] X. Li, S. Song, J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Autom. Control, 64 (2019), 4024–4034. http://doi.org/10.1109/TAC.2019.2905271 doi: 10.1109/TAC.2019.2905271
    [25] B. Jiang, Y. Lou, J. Lu, Input-to-state stability of delayed systems with bounded-delay impulses, Math. Model. Control, 2 (2022), 44–54. http://doi.org/10.3934/mmc.2022006 doi: 10.3934/mmc.2022006
    [26] Y. Shen, X. Liu, Event-based master–slave synchronization of complex-valued neural networks via pinning impulsive control, Neural Netw., 145 (2022), 374–385. http://doi.org/10.1016/j.neunet.2021.10.025 doi: 10.1016/j.neunet.2021.10.025
    [27] L. Zhang, X. Yang, C. Xu, J. Feng, Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control, Appl. Math. Comput., 306 (2017), 22–30. http://dx.doi.org/10.1016/j.amc.2017.02.004 doi: 10.1016/j.amc.2017.02.004
    [28] H. S. Hurd, J. B. Kaneene, J. W. Lloyd, A stochastic distributed-delay model of disease processes in dynamic populations, Prev. Vet. Med., 16 (1993), 21–29. http://dx.doi.org/10.1016/0167-5877(93)90005-E doi: 10.1016/0167-5877(93)90005-E
    [29] D. Zennaro, A. Ahmad, L. Vangelista, E. Serpedin, H. Nounou, M. Nounou, Network-wide clock synchronization via message passing with exponentially distributed link delays, IEEE Trans. Commun., 61 (2013), 2012–2024. http://dx.doi.org/10.1109/TCOMM.2013.021913.120595 doi: 10.1109/TCOMM.2013.021913.120595
    [30] G. Samanta, Permanence and extinction of a nonautonomous hiv/aids epidemic model with distributed time delay, Nonlinear Anal.-Real., 12 (2011), 1163–1177. http://dx.doi.org/10.1016/j.nonrwa.2010.09.010 doi: 10.1016/j.nonrwa.2010.09.010
    [31] H. Li, C. Li, D. Ouyang, S. K. Nguang, Z. He, Observer-based dissipativity control for T-S fuzzy neural networks with distributed time-varying delays, IEEE Trans. Cybern., 51 (2021), 5248–5258. http://dx.doi.org/10.1109/TCYB.2020.2977682 doi: 10.1109/TCYB.2020.2977682
    [32] X. Yang, Q. Song, J. Liang, B. He, Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations, J. Frankl. Inst., 352 (2015), 4382–4406. http://dx.doi.org/10.1016/j.jfranklin.2015.07.001 doi: 10.1016/j.jfranklin.2015.07.001
    [33] L. Wang, H. He, Z. Zeng, Global synchronization of fuzzy memristive neural networks with discrete and distributed delays, IEEE Trans. Fuzzy Syst., 28 (2020), 2022–2034. http://dx.doi.org/10.1109/TFUZZ.2019.2930032 doi: 10.1109/TFUZZ.2019.2930032
    [34] H. Li, L. Zhang, X. Zhang, J. Yu, A switched integral-based event-triggered control of uncertain nonlinear time-delay system with actuator saturation, IEEE Trans. Cybern., 52 (2022), 11335–11347. http://dx.doi.org/10.1109/TCYB.2021.3085735 doi: 10.1109/TCYB.2021.3085735
    [35] X. Li, Global robust stability for stochastic interval neural networks with continuously distributed delays of neutral type, Appl. Math. Comput., 215 (2010), 4370–4384. http://dx.doi.org/10.1016/j.amc.2009.12.068 doi: 10.1016/j.amc.2009.12.068
    [36] Z. Guo, J. Wang, Z. Yan, A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria, Neural Netw., 54 (2014), 112–122. http://dx.doi.org/10.1016/j.neunet.2014.03.002 doi: 10.1016/j.neunet.2014.03.002
    [37] Z. Xu, X. Li, P. Duan, Synchronization of complex networks with time-varying delay of unknown bound via delayed impulsive control, Neural Netw., 125 (2020), 224–232. http://doi.org/10.1016/j.neunet.2020.02.003 doi: 10.1016/j.neunet.2020.02.003
    [38] A. Abdurahman, H. Jiang, Z. Teng, Exponential lag synchronization for memristor-based neural networks with mixed time delays via hybrid switching control, J. Frankl. Inst., 353 (2016), 2859–2880. http://dx.doi.org/10.1016/j.jfranklin.2016.05.022 doi: 10.1016/j.jfranklin.2016.05.022
    [39] Z. Xu, D. Peng, X. Li, Synchronization of chaotic neural networks with time delay via distributed delayed impulsive control, Neural Netw., 118 (2019), 332–337. http://doi.org/10.1016/j.neunet.2019.07.002 doi: 10.1016/j.neunet.2019.07.002
    [40] W. Gong, J. Liang, J. Cao, Global $\mu$-stability of complex-valued delayed neural networks with leakage delay, Neurocomputing, 168 (2015), 135–144. http://dx.doi.org/10.1016/j.neucom.2015.06.006 doi: 10.1016/j.neucom.2015.06.006
    [41] T. Yu, J. Cao, L. Rutkowski, Y.-P. Luo, Finite-time synchronization of complex-valued memristive-based neural networks via hybrid control, IEEE Trans. Neural Netw. Learn. Syst., 33 (2022), 3938–3947. http://doi.org/10.1109/TNNLS.2021.3054967 doi: 10.1109/TNNLS.2021.3054967
    [42] L. Li, X. Shi, J. Liang, Synchronization of impulsive coupled complex-valued neural networks with delay: the matrix measure method, Neural Netw., 117 (2019), 285–294. http://doi.org/10.1016/j.neunet.2019.05.024 doi: 10.1016/j.neunet.2019.05.024
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1384) PDF downloads(111) Cited by(2)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog