The two approaches to solving nonlinear Caputo time-fractional wave-like equations with variable coefficients are examined in this study. The Homotopy perturbation transform method and the Yang transform decomposition method are the names of these two techniques. Three separate numerical examples are provided to demonstrate the effectiveness and precision of the suggested methods. The results were acquired to demonstrate the effectiveness and power of the two approaches, providing estimates with better precision and closed form solutions. The solutions to these kinds of equations can be found using the suggested methods as infinite series, and when these series are in closed form, they provide the exact solution. The suggested techniques have been demonstrated to be effective and efficient in their application. Three numerical examples are used to examine the methods accuracy and effectiveness.
Citation: M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Osama Y. Ababneh. Numerical investigation of fractional-order wave-like equation[J]. AIMS Mathematics, 2023, 8(3): 5281-5302. doi: 10.3934/math.2023265
The two approaches to solving nonlinear Caputo time-fractional wave-like equations with variable coefficients are examined in this study. The Homotopy perturbation transform method and the Yang transform decomposition method are the names of these two techniques. Three separate numerical examples are provided to demonstrate the effectiveness and precision of the suggested methods. The results were acquired to demonstrate the effectiveness and power of the two approaches, providing estimates with better precision and closed form solutions. The solutions to these kinds of equations can be found using the suggested methods as infinite series, and when these series are in closed form, they provide the exact solution. The suggested techniques have been demonstrated to be effective and efficient in their application. Three numerical examples are used to examine the methods accuracy and effectiveness.
[1] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993. |
[2] | P. Sunthrayuth, R. Ullah, A. Khan, R. Shah, J. Kafle, I. Mahariq, et al., Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations, J. Funct. Space, 2021 (2021). https://doi.org/10.1155/2021/1537958 |
[3] | J. Cheng, H. Zhang, W. Zhang, H. Zhang, Quasi-projective synchronization for Caputo type fractional-order complex-valued neural networks with mixed delays, Int. J. Control Autom. Syst., 20 (2022), 1723–1734. https://doi.org/10.1007/s12555-021-0392-6 doi: 10.1007/s12555-021-0392-6 |
[4] | M. Areshi, A. Khan, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Mathematics, 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385 |
[5] | S. Alyobi, R. Shah, A. Khan, N. A. Shah, K. Nonlaopon, Fractional analysis of nonlinear boussinesq equation under Atangana-Baleanu-Caputo operator, Symmetry, 14 (2022) 2417. https://doi.org/10.3390/sym14112417 |
[6] | H. Zhang, Y. Cheng, H. Zhang, W. Zhang, J. Cao, Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects, Math. Comput. Simulat., 197 (2022), 341–357. https://doi.org/10.1016/j.matcom.2022.02.022 doi: 10.1016/j.matcom.2022.02.022 |
[7] | S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y. M. Chu, Some further extensions considering discrete proportional fractional operators, Fractals, 30 (2022), 2240026. https://doi.org/10.1142/s0218348x22400266 doi: 10.1142/s0218348x22400266 |
[8] | S. N. Hajiseyedazizi, M. E. Samei, J. Alzabut, Y. M. Chu, On multi-step methods for singular fractional q-integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093 |
[9] | Y. Cheng, H. Zhang, W. Zhang, H. Zhang, Novel algebraic criteria on global Mittag-Leffler synchronization for FOINNs with the Caputo derivative and delay, J. Appl. Math. Comput., 68 (2022), 3527–3544. https://doi.org/10.1007/s12190-021-01672-0 doi: 10.1007/s12190-021-01672-0 |
[10] | M. M. Al-Sawalha, K. Nonlaopon, I. Khan, O. Y. Ababneh, Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel, AIMS Mathematics, 8 (2023), 3730–3746. https://doi.org/10.3934/math.2023186 doi: 10.3934/math.2023186 |
[11] | M. M. Al-Sawalha, O. Y. Ababneh, K. Nonlaopon, Numerical analysis of fractional-order Whitham-Broer-Kaup equations with non-singular kernel operators, AIMS Mathematics, 8 (2023), 2308–2336. https://doi.org/10.3934/math.2023120 doi: 10.3934/math.2023120 |
[12] | S. Mukhtar, R. Shah, S. Noor, The numerical investigation of a fractional-order multi-dimensional model of Navier-Stokes equation via novel techniques, Symmetry, 14 (2022), 1102. https://doi.org/10.3390/sym14061102 doi: 10.3390/sym14061102 |
[13] | L. Liu, L. Zhang, G. Pan, S. Zhang, Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller, Ocean Eng., 257 (2022). https://doi.org/10.1016/j.oceaneng.2022.111493 |
[14] | H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Cont. Dyn. A, 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027 |
[15] | P. Liu, J. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Cont. Dyn. B, 18 (2013), 2597–2625. https://doi.org/ 10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597 |
[16] | H. Jin, Z. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equations, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007 |
[17] | K. Liu, Z. Yang, W. Wei, B. Gao, D. Xin, C. Sun, et al., Novel detection approach for thermal defects: Study on its feasibility and application to vehicle cables, High Volt., 2022, 1–10. https://doi.org/10.1049/hve2.12258 |
[18] | D. Das, P. C. Ray, R. K. Bera, Solution of Riccati type nonlinear fractional differential equation by homotopy analysis method, Int. J. Sci. Res. Educ., 2016. https://doi.org/10.18535/ijsre/v4i06.15 |
[19] | V. S. Erturk, S. Momani, Solving systems of fractional differential equations using differential transform method, J. Comput. Appl. Math., 215 (2008) 142–151. https://doi.org/10.1016/j.cam.2007.03.029 |
[20] | A. M. Zidan, A. Khan, M. K.Alaoui, W. Weera, Evaluation of time-fractional fishers equations with the help of analytical methods, AIMS Mathematics, 7 (2022), 18746–18766. https://doi.org/10.3934/math.20221031 doi: 10.3934/math.20221031 |
[21] | F. B. M. Belgacem, V. Gulati, P. Goswami, A. Aljoujiee, A treatment of generalized fractional differential equations: Sumudu transform series expansion solutions and applications, Fract. Dynam., 2022,369. https://doi.org/10.1515/9783110472097-023 |
[22] | N. Shah, Y. Hamed, K. Abualnaja, J. Chung, A. Khan, A comparative analysis of fractional-order Kaup-Kupershmidt equation within different operators, Symmetry, 14 (2022), 986. https://doi.org/10.3390/sym14050986 doi: 10.3390/sym14050986 |
[23] | J. B. Yindoula, Exact solution of some linear and nonlinear partial differential equations by Laplace-Adomian method and SBA method, Adv. Differ. Equ. Contr., 2021,141–163. https://doi.org/10.17654/de025020141 |
[24] | A. E. Puhpam, S. K. Lydia, Mahgoub transform method for solving linear fractional differential equations, Int. J. Math. Trends Technol., 58 (2018), 253–257. https://doi.org/10.14445/22315373/ijmtt-v58p535 doi: 10.14445/22315373/ijmtt-v58p535 |
[25] | M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010 |
[26] | H. M. Srivastava, R. Shah, H. Khan, M Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Method Appl. Sci., 43 (2020), 199–212. https://doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846 |
[27] | K. Nonlaopon, A. M. Alsharif, A. M. Zidan, A. Khan, Y. S. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a Novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263 |
[28] | N. Shah, E. El-Zahar, A. Akgül, A. Khan, J. Kafle, Analysis of fractional-order regularized long-wave models via a novel transform, J. Funct. Space, 2022 (2022), 2754507. https://doi.org/10.1155/2022/2754507 doi: 10.1155/2022/2754507 |
[29] | M. Purohit, S. Mushtaq, Applications of Laplace-Adomian decomposition method for solving time-fractional advection dispersion equation, J. Math. Comput. Sci., 10 (2020), 1960–1968. https://doi.org/10.28919/jmcs/4798 doi: 10.28919/jmcs/4798 |
[30] | S. K. Lydia, Solving a system of nonlinear fractional differential equations using Mahgoub Adomian decomposition method, Bull. Pure Appl. Sci. Math. Stat., 38 (2019), 396–404. https://doi.org/10.5958/2320-3226.2019.00043.2 doi: 10.5958/2320-3226.2019.00043.2 |
[31] | T. Botmart, R. P. Agarwal, M. Naeem, A. Khan, R. Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, AIMS Mathematics, 7 (2022), 12483–12513. https://doi.org/10.3934/math.2022693 doi: 10.3934/math.2022693 |
[32] | M. Kbiri Alaoui, K. Nonlaopon, A. M. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order cahn-hilliard and gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643 |
[33] | R. Ye, P. Liu, K. Shi, B. Yan, State damping control: A novel simple method of rotor UAV with high performance, IEEE Access, 8 (2020), 214346–214357. https://doi.org/10.1109/ACCESS.2020.3040779 doi: 10.1109/ACCESS.2020.3040779 |
[34] | Z. Shao, Q. Zhai, Z. Han, X. Guan, A linear AC unit commitment formulation: An application of data-driven linear power flow model, Int. J. Elec. Power, 145 (2023), 108673. https://doi.org/10.1016/j.ijepes.2022.108673 doi: 10.1016/j.ijepes.2022.108673 |
[35] | V. N. Kovalnogov, R. V. Fedorov, D. A. Generalov, E. V. Tsvetova, T. E. Simos, C. Tsitouras, On a new family of Runge-Kutta-Nystrom pairs of orders 6(4), Mathematics, 10 (2022), 875. https://doi.org/10.3390/math10060875 doi: 10.3390/math10060875 |
[36] | G. Adomian, R. Rach, Inversion of nonlinear stochastic operators, J. Math. Anal. Appl., 91 (1983) 39–46. https://doi.org/10.1016/0022-247x(83)90090-2 |
[37] | K. Nonlaopon, M. Naeem, A. M. Zidan, A. Alsanad, A. Gumaei, Numerical investigation of the time-fractional Whitham-Broer-Kaup equation involving without singular kernel operators, Complexity, 2021 (2021). https://doi.org/10.1155/2021/7979365 |
[38] | J. H. He, Homotopy perturbation technique, Comput. Method Appl. M., 178 (1999), 257–262. https://doi.org/10.1016/s0045-7825(99)00018-3 doi: 10.1016/s0045-7825(99)00018-3 |
[39] | J. H. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Nonlin. Mech., 35 (2000), 37–43. https://doi.org/10.1016/s0020-7462(98)00085-7 doi: 10.1016/s0020-7462(98)00085-7 |
[40] | X. B. Yin, S. Kumar, D. Kumar, A modified homotopy analysis method for solution of fractional wave equations, Adv. Mech. Eng., 7 (2015). https://doi.org/10.1177/1687814015620330 |
[41] | X. J. Yang, D. Baleanu, H. M. Srivastava, Local fractional laplace transform and applications, In: Local fractional integral transforms and their applications, New York: Academic Press, 2016. https://doi.org/10.1016/b978-0-12-804002-7.00004-8 |
[42] | P. Sunthrayuth, H. A. Alyousef, S. A. El-Tantawy, A. Khan, N. Wyal, Solving fractional-order diffusion equations in a plasma and fluids via a novel transform, J. Funct. Space, 2022 (2022), 1899130. https://doi.org/10.1155/2022/1899130 doi: 10.1155/2022/1899130 |
[43] | M. K. Alaoui, R. Fayyaz, A. Khan, R. Shah, M. S. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 3248376. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376 |