Research article

New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics

  • Received: 25 September 2022 Revised: 07 November 2022 Accepted: 15 November 2022 Published: 01 December 2022
  • MSC : 78A10, 35C07, 60H15, 60H30, 60H40, 35Q55, 35Q60

  • Using the unified solver technique, the rigorous and effective new novel optical progressive and stationary structures are established in the aspects of hyperbolic, trigonometric, rational, periodical and explosive types. These types are concrete in the stochastic nonlinear Schrödinger equations (NLSEs) with operative physical parameters. The obtained stochastic solutions with random parameters that are founded in the form of rational, dissipative, explosive, envelope, periodic, and localized soliton can be utilized in fiber applications. The stochastic modulations of structures' amplitude and frequency caused by dramatic instantaneous influences of both fibers nonlinear, dispersive, losing and noise term effects maybe very important in new fiber communications.

    Citation: Yousef F. Alharbi, E. K. El-Shewy, Mahmoud A. E. Abdelrahman. New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics[J]. AIMS Mathematics, 2023, 8(2): 4126-4140. doi: 10.3934/math.2023205

    Related Papers:

  • Using the unified solver technique, the rigorous and effective new novel optical progressive and stationary structures are established in the aspects of hyperbolic, trigonometric, rational, periodical and explosive types. These types are concrete in the stochastic nonlinear Schrödinger equations (NLSEs) with operative physical parameters. The obtained stochastic solutions with random parameters that are founded in the form of rational, dissipative, explosive, envelope, periodic, and localized soliton can be utilized in fiber applications. The stochastic modulations of structures' amplitude and frequency caused by dramatic instantaneous influences of both fibers nonlinear, dispersive, losing and noise term effects maybe very important in new fiber communications.



    加载中


    [1] F. Mirzaee, S. Rezaei, N. Samadyar, Solving one-dimensional nonlinear stochastic sine-Gordon equation with a new meshfree technique, Int. J. Numer. Modell., 34 (2021), 2856. http://doi.org/10.1002/jnm.2856 doi: 10.1002/jnm.2856
    [2] Y. F. Alharbi, M. A. E. Abdelrahman, M. A. Sohaly, M. Inc, Stochastic treatment of the solutions for the resonant nonlinear Schrödinger equation with spatio-temporal dispersions and inter-modal using beta distribution, Eur. Phys. J. Plus, 135 (2020), 368. http://doi.org/10.1140/epjp/s13360-020-00371-2 doi: 10.1140/epjp/s13360-020-00371-2
    [3] Y. F. Alharbi, M. A. Sohaly, M. A. E. Abdelrahman, Fundamental solutions to the stochastic perturbed nonlinear Schrödinger's equation via gamma distribution, Results Phys., 25 (2021), 104249. http://doi.org/10.1016/j.rinp.2021.104249 doi: 10.1016/j.rinp.2021.104249
    [4] F. Mirzaee, S. Rezaei, N. Samadyar, Numerical solution of two-dimensional stochastic time-fractional sine-Gordon equation on non-rectangular domains using finite difference and meshfree methods, Eng. Anal. Boundary Elem., 127 (2021), 53–63. http://doi.org/10.1016/j.enganabound.2021.03.009 doi: 10.1016/j.enganabound.2021.03.009
    [5] K. Hosseini, D. Baleanu, S. Rezapour, S. Salahshour, M. Mirzazadeh, M. Samavat, Multi-complexiton and positive multi-complexiton structures to a generalized B-type Kadomtsev-Petviashvili equation, J. Ocean Eng. Sci., 2022. http://doi.org/10.1016/j.joes.2022.06.020 doi: 10.1016/j.joes.2022.06.020
    [6] K. Hosseini, M. Mirzazadeh, S. Salahshour, D. Baleanu, A. Zafar, Specific wave structures of a fifth-order nonlinear water wave equation, J. Ocean Eng. Sci., 7 (2022), 462–466. http://doi.org/10.1016/j.joes.2021.09.019 doi: 10.1016/j.joes.2021.09.019
    [7] Z. Q. Li, S. F. Tian, J. J. Yang, E. Fan, Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, J. Differ. Equations, 329 (2022), 31–88. http://doi.org/10.1016/j.jde.2022.05.003 doi: 10.1016/j.jde.2022.05.003
    [8] S. F. Tian, M. J. Xu, T. T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation, Proc. R. Soc. A Math. Phys. Eng. Sci., 477 (2021), 455. http://doi.org/10.1098/rspa.2021.0455 doi: 10.1098/rspa.2021.0455
    [9] H. A. Alkhidhr, H. G. Abdelwahed, M. A. E. Abdelrahmand, S. Alghanim, Some solutions for a stochastic NLSE in the unstable and higher order dispersive environments, Results Phys., 34 (2022), 105242. http://doi.org/10.1016/j.rinp.2022.105242 doi: 10.1016/j.rinp.2022.105242
    [10] P. A. Cioica, S. Dahlke, Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains, Int. J. Comput. Math., 89 (2012), 2443–2459. http://doi.org/10.1080/00207160.2011.631530 doi: 10.1080/00207160.2011.631530
    [11] S. Alipour, F. Mirzaee, An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: a combined successive approximations method with bilinear spline interpolation, Appl. Math. Comput., 371 (2020), 124947. http://doi.org/10.1016/j.amc.2019.124947 doi: 10.1016/j.amc.2019.124947
    [12] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339. http://doi.org/10.1140/epjp/i2017-11607-5 doi: 10.1140/epjp/i2017-11607-5
    [13] F. Mirzaee, N. Samadyar, Implicit meshless method to solve 2D fractional stochastic Tricomi-type equation defined on irregular domain occurring in fractal transonic flow, Numer. Methods Part. Differ. Equations, 37 (2021), 1781–1799. http://doi.org/10.1002/num.22608 doi: 10.1002/num.22608
    [14] M. H. Heydari, M. R. Hooshmandasl, A. Shakiba, C. Cattani, Legendre wavelets Galerkin method for solving nonlinear stochastic integral equations, Nonlinear Dyn., 85 (2016), 1185–1202. http://doi.org/10.1007/s11071-016-2753-x doi: 10.1007/s11071-016-2753-x
    [15] F. Mohammadi, Numerical treatment of nonlinear stochastic Itô-Volterra integral equations by piecewise spectral-collocation method, J. Comput. Nonlinear Dyn., 14 (2019), 031007. http://doi.org/10.1115/1.4042440 doi: 10.1115/1.4042440
    [16] R. A. Alomair, S. Z. Hassan, M. A. E. Abdelrahman, A. H. Amin, E. K. El-Shewy, New solitary optical solutions for the NLSE with $\delta$-potential through Brownian process, Results Phys., 40 (2022), 105814. http://doi.org/10.1016/j.rinp.2022.105814 doi: 10.1016/j.rinp.2022.105814
    [17] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys., 71 (1999), 463. http://doi.org/10.1103/RevModPhys.71.463 doi: 10.1103/RevModPhys.71.463
    [18] H. Triki, C. Bensalem, A. Biswas, S. Khan, Q. Zhou, S. Adesanya, et al., Self-similar optical solitons with continuous-wave background in a quadratic-cubic non-centrosymmetric waveguide, Opt. Commun., 437 (2019), 392–398. http://doi.org/10.1016/j.optcom.2018.12.074 doi: 10.1016/j.optcom.2018.12.074
    [19] A. S. Davydov, Solitons in molecular systems, Springer, 1985. http://doi.org/10.1007/978-94-017-3025-9
    [20] K. Nakkeeran, Bright and dark optical solitons in fiber media with higher-order effects, Chaos Solitons Fract., 13 (2002), 673–679. http://doi.org/10.1016/S0960-0779(00)00278-2 doi: 10.1016/S0960-0779(00)00278-2
    [21] V. N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett., 85 (2000), 4502–4505. http://doi.org/10.1103/PhysRevLett.85.4502 doi: 10.1103/PhysRevLett.85.4502
    [22] K. Hosseini, M. Mirzazadeh, D. Baleanu, S. Salahshour, L. Akinyemi, Optical solitons of a high-order nonlinear Schrodinger equation involving nonlinear dispersions and Kerr effect, Opt. Quantum Electron., 54 (2022), 177. http://doi.org/10.1007/s11082-022-03522-0 doi: 10.1007/s11082-022-03522-0
    [23] A. Houwe, Y. Saliou, P. Djorwe, S. Abbagari, L. Akinyemi, S. Y. Doka, Modulation instability gain and modulated wave shape incited by the acoustic longitudinal vibrations in molecular chain model, Phys. Scr., 97 (2022), 085206. http://doi.org/10.1088/1402-4896/ac7a6b doi: 10.1088/1402-4896/ac7a6b
    [24] S. Abbagari, A. Houwe, L. Akinyemi, Y. Saliou, T. B. Bouetou, Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain, Chaos Solitons Fract., 160 (2022), 112255. http://doi.org/10.1016/j.chaos.2022.112255 doi: 10.1016/j.chaos.2022.112255
    [25] D. Kumar, K. Hosseini, M. K. A. Kaabar, M. Kaplan, S. Salahshour, On some novel solution solutions to the generalized Schrödinger-Boussinesq equations for the interaction between complex short wave and real long wave envelope, J. Ocean Eng. Sci., 7 (2022), 353–362. http://doi.org/10.1016/j.joes.2021.09.008 doi: 10.1016/j.joes.2021.09.008
    [26] A. Houwe, P. Djorwe, S. Abbagari, S. Y. Doka, S. G. Nana Engo, Discrete solitons in nonlinear optomechanical array, Chaos Solitons Fract., 154 (2022), 111593. http://doi.org/10.1016/j.chaos.2021.111593 doi: 10.1016/j.chaos.2021.111593
    [27] M. A. E. Abdelrahman, M. A. Sohaly, Y. F. Alharbi, Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution, Phys. Scr., 96 (2021), 125223. http://doi.org/10.1088/1402-4896/ac119c doi: 10.1088/1402-4896/ac119c
    [28] Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-solitonsolution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. http://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [29] Z. Q. Li, S. F. Tian, J. J. Yang, Soliton resolution for the Wadati-Konno-Ichikawa equation with weighted Sobolev initial data, Ann. Henri Poincare, 23 (2022), 2611–2655. http://doi.org/10.1007/s00023-021-01143-z doi: 10.1007/s00023-021-01143-z
    [30] J. J. Yang, S. F. Tian, Z. Q. Li, Riemann-Hilbert problem for the focusing nonlinear Schrödinger equation with multiple high-order poles under nonzero boundary conditions, Phys. D, 432 (2022), 133162. http://doi.org/10.1016/j.physd.2022.133162 doi: 10.1016/j.physd.2022.133162
    [31] W. W. Ling, P. X. Wu, A fractal variational theory of the Broer-Kaup system in shallow water waves, Therm. Sci., 25 (2021), 2051–2056. http://doi.org/10.2298/TSCI180510087L doi: 10.2298/TSCI180510087L
    [32] J. H. He, W. F. Hou, C. H. He, T. Saeed, T. Hayat, Variational approach to fractal solitary waves, Fractals, 29 (2021), 2150199. http://doi.org/10.1142/S0218348X21501991 doi: 10.1142/S0218348X21501991
    [33] J. H. He, N. Qie, C. H. He, T. Saeed, On a strong minimum condition of a fractal variational principle, Appl. Math. Lett., 119 (2021), 107199. http://doi.org/10.1016/j.aml.2021.107199 doi: 10.1016/j.aml.2021.107199
    [34] J. H. He, N. Qie, C. H. He, Solitary waves travelling along an unsmooth boundary, Results Phys., 24 (2021), 104104. http://doi.org/10.1016/j.rinp.2021.104104 doi: 10.1016/j.rinp.2021.104104
    [35] A. Houwe, S. Abbagari, S. Y. Doka, M. Inc, T. B. Bouetou, Clout of fractional time order and magnetic coupling coefficients on the soliton and modulation instability gain in the Heisenberg ferromagnetic spin chain, Chaos Solitons Fract., 151 (2021), 111254. http://doi.org/10.1016/j.chaos.2021.111254 doi: 10.1016/j.chaos.2021.111254
    [36] A. Houwe, H. Rezazadeh, A. Bekir, S. Y. Doka, Traveling-wave solutions of the Klein-Gordon equations with M-fractional derivative, Pramana, 96 (2022), 26. http://doi.org/10.1007/s12043-021-02254-2 doi: 10.1007/s12043-021-02254-2
    [37] M. K. A. Kaabar, F. Martínez, J. F. Gómez-Aguilar, B. Ghanbari, M. Kaplan, H. Günerhan, New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method, Math. Methods Appl. Sci., 44 (2021), 11138–11156. http://doi.org/10.1002/mma.7476 doi: 10.1002/mma.7476
    [38] B. Ghanbari, J. F. Gómez-Aguilar, New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatiotemporal dispersion involving M-derivative, Modern Phys. Lett. B, 33 (2019), 1950235. http://doi.org/10.1142/S021798491950235X doi: 10.1142/S021798491950235X
    [39] E. YaŞar, E. YaŞar, Optical solitons of conformable space-time fractional NLSE with Spatio-temporal dispersion, New Trends Math. Sci., 3 (2018), 116–127. http://doi.org/10.20852/ntmsci.2018.300 doi: 10.20852/ntmsci.2018.300
    [40] T. Ueda, W. L. Kath, Dynamics of optical pulses in randomly birefrengent fibers, Phys. D, 55 (1992), 166–181. http://doi.org/10.1016/0167-2789(92)90195-S doi: 10.1016/0167-2789(92)90195-S
    [41] H. G. Abdelwahed, E. K. El-Shewy, R. Sabry, M. A. E. Abdelrahman, Characteristics of stochastic Langmuir wave structures in presence of Itô sense, Results Phys., 37 (2022), 105435. http://doi.org/10.1016/j.rinp.2022.105435 doi: 10.1016/j.rinp.2022.105435
    [42] S. M. Ross, Brownian motion and stationary processes, Academic Press, 2014.
    [43] M. A. E. Abdelrahman, H. A. Alkhidhr, A. H. Amin, E. K. El-Shewy, A new structure of solutions to the system of ISALWs via stochastic sense, Results Phys., 37 (2022), 105473. http://doi.org/10.1016/j.rinp.2022.105473 doi: 10.1016/j.rinp.2022.105473
    [44] G. E. Falkovich, I. Kolokolov, V. Lebedev, S. K. Turitsyn, Statistics of soliton-bearing systems with additive noise, Phys. Rev. E, 63 (2001), 025601. http://doi.org/10.1103/PhysRevE.63.025601 doi: 10.1103/PhysRevE.63.025601
    [45] H. G. Abdelwahed, E. K. El-Shewy, S. Alghanim, M. A. E. Abdelrahman, Modulations of some physical parameters in a nonlinear Schrödinger type equation in fiber communications, Results Phys., 38 (2022), 105548. http://doi.org/10.1016/j.rinp.2022.105548 doi: 10.1016/j.rinp.2022.105548
    [46] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Springer, 1991. http://doi.org/10.1007/978-1-4612-0949-2
    [47] M. A. E. Abdelrahman, H. AlKhidhr, A robust and accurate solver for some nonlinear partial differential equations and tow applications, Phys. Scr., 95 (2020), 065212. http://doi.org/10.1088/1402-4896/ab80e7 doi: 10.1088/1402-4896/ab80e7
    [48] M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 9444803. http://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803
    [49] F. Martínez, M. K. A. Kaabar, A novel theoretical investigation of the Abu-Shady–Kaabar fractional derivative as a modeling tool for science and engineering, Comput. Math. Methods Med., 2022 (2022), 4119082. http://doi.org/10.1155/2022/4119082 doi: 10.1155/2022/4119082
    [50] M. Abu-Shady, M. K. A. Kaabar, A novel computational tool for the fractional-order special functions arising from modeling scientific phenomena via Abu-Shady–Kaabar fractional derivative, Comput. Math. Methods Med., 2022 (2022), 2138775. http://doi.org/10.1155/2022/2138775 doi: 10.1155/2022/2138775
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1409) PDF downloads(74) Cited by(18)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog