Research article Special Issues

Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters

  • Received: 26 June 2023 Revised: 20 July 2023 Accepted: 24 July 2023 Published: 07 August 2023
  • MSC : 39A10, 39A11

  • In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters

    $ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $

    where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.

    Citation: Taixiang Sun, Guangwang Su, Bin Qin, Caihong Han. Global behavior of a max-type system of difference equations of the second order with four variables and period-two parameters[J]. AIMS Mathematics, 2023, 8(10): 23941-23952. doi: 10.3934/math.20231220

    Related Papers:

  • In this paper, we study global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters

    $ \left\{\begin{array}{ll}x_{n} = \max\Big\{A_n , \frac{z_{n-1}}{y_{n-2}}\Big\}, \ y_{n} = \max \Big\{B_n, \frac{w_{n-1}}{x_{n-2}}\Big\}, \ z_{n} = \max\Big\{C_n , \frac{x_{n-1}}{w_{n-2}}\Big\}, \ w_{n} = \max \Big\{D_n, \frac{y_{n-1}}{z_{n-2}}\Big\}, \ \end{array}\right. \ \ n\in \{0, 1, 2, \cdots\}, $

    where $ A_n, B_n, C_n, D_n\in (0, +\infty) $ are periodic sequences with period 2 and the initial values $ x_{-i}, y_{-i}, z_{-i}, w_{-i}\in (0, +\infty)\ (1\leq i\leq 2) $. We show that if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\} < 1 $, then this system has unbounded solutions. Also, if $ \min\{A_0C_1, B_0D_1, A_1C_0, B_1D_0\}\geq 1 $, then every solution of this system is eventually periodic with period $ 4 $.



    加载中


    [1] T. Sun, G. Su, C. Han, L. Li, W. Quan, Global behavior of a max-type system of difference equations with four variables, J. Appl. Math. Comput., 68 (2022), 391–402. https://doi.org/10.1007/s12190-021-01543-8 doi: 10.1007/s12190-021-01543-8
    [2] S. Stevic, On the recursive sequence $x(n+1) = \frac{A}{\Pi^k_{i = 0}\; x(n-i)}+\frac{1}{\Pi^{2(k+1)}_{j = k+2}\; x(n-j)}$, Taiwanese J. Math., 7 (2003), 249–259.
    [3] S. Stevic, Boundedness character of a class of difference equations, Nonlinear Anal. TMA, 70 (2009), 839–848. https://doi.org/10.1016/j.na.2008.01.014 doi: 10.1016/j.na.2008.01.014
    [4] E. Fotiades, G. Papaschinopoulos, On a system of difference equations with maximum, Appl. Math. Comput., 221 (2013), 684–690. https://doi.org/10.1016/j.amc.2013.07.014 doi: 10.1016/j.amc.2013.07.014
    [5] G. Su, T. Sun, B. Qin, On the solutions of a max-type system of difference equations with period-two parameters, Adv. Differ. Equ., 2018 (2018), 358. https://doi.org/10.1186/s13662-018-1826-1 doi: 10.1186/s13662-018-1826-1
    [6] G. Su, C. Han, T. Sun, L. Li, On the solutions of a max-type system of difference equations of higher order, Adv. Differ. Equ., 2020 (2020), 213. https://doi.org/10.1186/s13662-020-02673-2 doi: 10.1186/s13662-020-02673-2
    [7] Y. Yazlik, D. T. Tollu, N. Taskara, On the solutions of a max-type difference equation system, Math. Meth. Appl. Sci., 38 (2015), 4388–4410. https://doi.org/10.1002/mma.3377 doi: 10.1002/mma.3377
    [8] T. Sun, H. Xi, On the solutions of a system of difference equations with maximum, Appl. Math. Comput., 290 (2016), 292–297. https://doi.org/10.1016/j.amc.2016.06.020 doi: 10.1016/j.amc.2016.06.020
    [9] S. Stević, On a symmetric system of max-type difference equations, Appl. Math. Comput., 219 (2013), 8407–8412. https://doi.org/10.1016/j.amc.2016.06.020 doi: 10.1016/j.amc.2016.06.020
    [10] S. Stević, On positive solutions of a system of max-type difference equations, J. Comput. Anal. Appl., 16 (2014), 906–915.
    [11] K. S. Berenhaut, J. D. Foley, S. Stević, Boundedness character of positive solutions of a max difference equation, J. Differ. Equ. Appl., 12 (2006), 1193–1199. https://doi.org/10.1080/10236190600949766 doi: 10.1080/10236190600949766
    [12] D. M. Cranston, C. M. Kent, On the boundedness of positive solutions of the reciprocal max-type difference equation $ x_n = \max\{\frac{A^1_{n-1}}{x_{n-1}}, \frac{A^2_{n-1}}{x_{n-2}}, \cdots, \frac{A^t_{n-1}}{x_{n-t}}\}$ with periodic parameters, Appl. Math. Comput., 221 (2013), 144–151. https://doi.org/10.1016/j.amc.2013.06.040 doi: 10.1016/j.amc.2013.06.040
    [13] M. M. El-Dessoky, On the periodicity of solutions of max-type difference equation, Math. Meth. Appl. Sci., 38 (2015), 3295–3307. https://doi.org/10.1002/mma.3296 doi: 10.1002/mma.3296
    [14] E. M. Elsayed, B. D. Iričanin, On a max-type and a min-type difference equation, Appl. Math. Comput., 215 (2009), 608–614. https://doi.org/10.1016/j.amc.2009.05.045 doi: 10.1016/j.amc.2009.05.045
    [15] E. M. Elsayed, B. S. Alofi, The periodic nature and expression on solutions of some rational systems of difference equations, Alexandria Engin. J., 74 (2023), 269–283. https://doi.org/10.1016/j.aej.2023.05.026 doi: 10.1016/j.aej.2023.05.026
    [16] W. Liu, S. Stević, Global attractivity of a family of nonautonomous max-type difference equations, Appl. Math. Comput., 218 (2012), 6297–6303. https://doi.org/10.1016/j.amc.2011.11.108 doi: 10.1016/j.amc.2011.11.108
    [17] W. Liu, X. Yang, S. Stević, On a class of nonautonomous max-type difference equations, Abstr. Appl. Anal., 2011 (2011), 327432. https://doi.org/10.1155/2011/436852 doi: 10.1155/2011/436852
    [18] B. Qin, T. Sun, H. Xi, Dynamics of the max-type difference equation $x_{n+1} = \max\{\frac{A}{x_n}, x_{n-k}\}$, J. Comput. Appl. Anal., 14 (2012), 856–861. https://doi.org/10.1016/j.amc.2016.06.020 doi: 10.1016/j.amc.2016.06.020
    [19] T. Sauer, Global convergence of max-type equations, J. Differ. Equ. Appl., 17 (2011), 1–8. https://doi.org/10.1080/10236190903002149 doi: 10.1080/10236190903002149
    [20] S. Stević, Global stability of a max-type difference equation, Appl. Math. Comput., 216 (2010), 354–356. https://doi.org/10.1080/10236190903002149 doi: 10.1080/10236190903002149
    [21] S. Stević, Periodicity of a class of nonautonomous max-type difference equations, Appl. Math. Comput., 217 (2011), 9562–9566. https://doi.org/10.1016/j.amc.2011.04.022 doi: 10.1016/j.amc.2011.04.022
    [22] S. Stević, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Th. Differ. Equ., 67 (2014), 1–15. https://doi.org/10.14232/ejqtde.2014.1.67 doi: 10.14232/ejqtde.2014.1.67
    [23] S. Stević, M. A. Alghamdi, A. Alotaibi, Long-term behavior of positive solutions of a system of max-type difference equations, Appl. Math. Comput., 235 (2014), 567–574. https://doi.org/10.1016/j.amc.2013.11.045 doi: 10.1016/j.amc.2013.11.045
    [24] S. Stević, M. A. Alghamdi, A. Alotaibi, N. Shahzad, Eventual periodicity of some systems of max-type difference equations, Appl. Math. Comput., 236(2014), 635–641. https://doi.org/10.1016/j.amc.2013.12.149 doi: 10.1016/j.amc.2013.12.149
    [25] G. Su, T. Sun, B. Qin, Eventually periodic solutions of a max-type system of difference equations of higher order, Discrete Dynam. Nat. Soc., 2018 (2018), 8467682. https://doi.org/10.1155/2018/8467682 doi: 10.1155/2018/8467682
    [26] T. Sun, Q. He, X. Wu, H. Xi, Global behavior of the max-type difference equation $x_n = \max\{\frac{1}{ x_{n-m}}, \frac{A_n}{ x_{n-r}}\}$, Appl. Math. Comput., 248 (2014), 687–692. https://doi.org/10.1016/j.amc.2014.10.018 doi: 10.1016/j.amc.2014.10.018
    [27] T. Sun, J. Liu, Q. He, X. Liu, Eventually periodic solutions of a max-type difference equation, The Sci. World J., 2014 (2014), 219437. https://doi.org/10.1155/2014/219437 doi: 10.1155/2014/219437
    [28] T. Sun, B. Qin, H. Xi, C. Han, Global behavior of the max-type difference equation $x_{n+1} = \max\{\frac{1}{x_n}, \frac{A_n}{x_{n-1}}\}$, Abstr. Appl. Anal., 2019 (2009), 152964. https://doi.org/10.1155/2009/152964 doi: 10.1155/2009/152964
    [29] T. Sun, H. Xi, C. Han, B. Qin, Dynamics of the max-type difference equation $x_n = \max\{ \frac{ 1}{ x_{n-m}}, \frac{ A_n}{ x_{n-r}}\}$, J. Appl. Math. Comput., 38 (2012), 173–180. https://doi.org/10.1007/s12190-010-0471-y doi: 10.1007/s12190-010-0471-y
    [30] Q. Xiao, Q. Shi, Eventually periodic solutions of a max-type equation, Math. Comput. Model., 57 (2013), 992–996. https://doi.org/10.1016/j.mcm.2012.10.010 doi: 10.1016/j.mcm.2012.10.010
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(952) PDF downloads(39) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog