Research article

Resolving set and exchange property in nanotube

  • Received: 20 March 2023 Revised: 06 June 2023 Accepted: 12 June 2023 Published: 20 June 2023
  • MSC : 05C09, 05C12, 05C92

  • Give us a linked graph, $ G = (V, E). $ A vertex $ w\in V $ distinguishes between two components (vertices and edges) $ x, y\in E\cup V $ if $ d_G(w, x)\neq d_G (w, y). $ Let $ W_{1} $ and $ W_{2} $ be two resolving sets and $ W_{1} $ $ \neq $ $ W_{2} $. Then, we can say that the graph $ G $ has double resolving set. A nanotube derived from an quadrilateral-octagonal grid belongs to essential and extensively studied compounds in materials science. Nano-structures are very important due to their thickness. In this article, we have discussed the metric dimension of the graphs of nanotubes derived from the quadrilateral-octagonal grid. We proved that the generalized nanotube derived from quadrilateral-octagonal grid have three metric dimension. We also check that the exchange property is also held for this structure.

    Citation: Ali N. A. Koam, Sikander Ali, Ali Ahmad, Muhammad Azeem, Muhammad Kamran Jamil. Resolving set and exchange property in nanotube[J]. AIMS Mathematics, 2023, 8(9): 20305-20323. doi: 10.3934/math.20231035

    Related Papers:

  • Give us a linked graph, $ G = (V, E). $ A vertex $ w\in V $ distinguishes between two components (vertices and edges) $ x, y\in E\cup V $ if $ d_G(w, x)\neq d_G (w, y). $ Let $ W_{1} $ and $ W_{2} $ be two resolving sets and $ W_{1} $ $ \neq $ $ W_{2} $. Then, we can say that the graph $ G $ has double resolving set. A nanotube derived from an quadrilateral-octagonal grid belongs to essential and extensively studied compounds in materials science. Nano-structures are very important due to their thickness. In this article, we have discussed the metric dimension of the graphs of nanotubes derived from the quadrilateral-octagonal grid. We proved that the generalized nanotube derived from quadrilateral-octagonal grid have three metric dimension. We also check that the exchange property is also held for this structure.



    加载中


    [1] M. F. Nadeem, M. Hassan, M. Azeem, S. U. D. Khan, M. R. Shaik, M. A. F. Sharaf, et al., Application of resolvability technique to investigate the different polyphenyl structures for polymer industry, J. Chem., 2021 (2021), 6633227. https://doi.org/10.1155/2021/6633227 doi: 10.1155/2021/6633227
    [2] H. M. A. Siddiqui, N. Imran, Computation of metric dimension and partition dimension of nanotubes, J. Comput. Theor. Nanosci., 12 (2015), 199–203. https://doi.org/10.1166/jctn.2015.3717 doi: 10.1166/jctn.2015.3717
    [3] Z. Hussain, S. M. Kang, M. Rafique, M. Munir, U. Ali, A. Zahid, et al., Bounds for partition dimension of m-wheels, Open Phys., 17 (2019), 340–344. https://doi.org/10.1515/Phys-2019-0037 doi: 10.1515/Phys-2019-0037
    [4] A. Shabbir, M. Azeem, On the partition dimension of the tri-hexagonal $\alpha$-Boron nanotube, IEEE Access, 9 (2021), 55644–55653. https://doi.org/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716
    [5] H. Alshehri, A. Ahmad, Y. Alqahtani, M. Azeem, Vertex metric-based dimension of generalized perimantanes diamondoid structure, IEEE Access, 10 (2022), 43320–43326. https://doi.org/10.1109/ACCESS.2022.3169277 doi: 10.1109/ACCESS.2022.3169277
    [6] Al-N. Al-H. Ahmad, A. Ahmad, Generalized perimantanes diamondoid structure and their edge-based metric dimensions, AIMS Mathematics, 7 (2022), 11718–11731. https://doi.org/10.3934/math.2022653 doi: 10.3934/math.2022653
    [7] S. Manzoor, M. K. Siddiqui, S. Ahmad, On entropy measures of polycyclic hydroxychloroquine used for novel Coronavirus (COVID-19) treatment, Polycycl. Aromat. Comp., 42 (2020), 2947–2969. https://doi.org/10.1080/10406638.2020.1852289 doi: 10.1080/10406638.2020.1852289
    [8] M. S. Alatawi, A. Ahmad, A. N. A. Koam, S. Husain, M. Azeem, Computing vertex resolvability of benzenoid tripod structure, AIMS Mathematics, 7 (2022), 6971–6983. https://doi.org/10.3934/math.2022387 doi: 10.3934/math.2022387
    [9] H. M. A. Siddiqui, M. Imran, Computing the metric and partition dimension of H-Naphtalenic and VC5C7 nanotubes, J. Optoelectron. Adv. Mater., 17 (2016), 790–794.
    [10] N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs, AIMS Mathematics, 3 (2018), 343–352. https://doi.org/10.3934/Math.2018.3.343 doi: 10.3934/Math.2018.3.343
    [11] B. Yang, M. Rafiullah, H. M. A. Siddiqui, S. Ahmad, On resolvability parameters of some wheel related graphs, J. Chem., 2019 (2019), 9259032. https://doi.org/10.1155/2019/9259032 doi: 10.1155/2019/9259032
    [12] P. J. Slater, Leaves of trees, Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 1975,549–559.
    [13] F. Harary, R. A. Melter, On the metric dimension of graphs, Ars Combinatoria, 2 (1976), 191–195.
    [14] A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070
    [15] L. M. Blumenthal, Theory and applications of distance geometry, Oxford: Clarendon, 1953.
    [16] D. L. Boutin, Determining set, resolving sets, and the exchange property, Graphs and Combinatorics, 25 (2009), 789–806. https://doi.org/10.1007/s00373-010-0880-6 doi: 10.1007/s00373-010-0880-6
    [17] M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. https://doi.org/10.1080/10543409308835060 doi: 10.1080/10543409308835060
    [18] A. Ahmad, A. N. A. Koam, M. H. F. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014
    [19] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 doi: 10.1016/0166-218X(95)00106-2
    [20] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Ortrud, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [21] P. Manuel, B. Rajan, I. Rajasingh, C. Monica M, On minimum metric dimension of honeycomb networks, Journal of Discrete Algorithms, 6 (2008), 20–27. https://doi.org/10.1016/j.jda.2006.09.002 doi: 10.1016/j.jda.2006.09.002
    [22] A. Piperno, Search space contraction in canonical labeling of graphs, arXiv: 0804.4881.
    [23] S. Söderberg, H. S. Shapiro, A combinatory detection problem, The American Mathematical Monthly, 70 (1963), 1066–1070. https://doi.org/10.1080/00029890.1963.11992174 doi: 10.1080/00029890.1963.11992174
    [24] V. Chvátal, Mastermind, Combinatorica, 3 (1983), 325–329. https://doi.org/10.1007/BF02579188 doi: 10.1007/BF02579188
    [25] M. Perc, J. Gomez-Gardens, A. Szolnoki, L. M. Floria, Y. Moreno, Evolutionary dynamics of group interactions on structured populations: a review, J. R. Soc. Interface, 10 (2013), 20120997. http://doi.org/10.1098/rsif.2012.0997 doi: 10.1098/rsif.2012.0997
    [26] M. Perc, A. Szolnoki, Coevolutionary games–A mini-review, Biosystems, 99 (2010), 109–125. https://doi.org/10.1016/j.biosystems.2009.10.003 doi: 10.1016/j.biosystems.2009.10.003
    [27] I. Javaid, S. Shokat, On the partition dimension of some wheel related graphs, Journal of Prime Research in Mathematics, 4 (2008), 154–164.
    [28] A. N. A. Koam, A. Ahmad, M. Azeem, M. F. Nadeem, Bounds on the partition dimension of one pentagonal carbon nanocone structure, Arab. J. Chem., 15 (2022), 103923. https://doi.org/10.1016/j.arabjc.2022.103923 doi: 10.1016/j.arabjc.2022.103923
    [29] M. Basak, L. Saha, G. K. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs Cn(1, 2, 3), Theor. Comput. Sci., 817 (2020), 66–79. https://doi.org/10.1016/j.tcs.2019.01.011 doi: 10.1016/j.tcs.2019.01.011
    [30] L. Saha, M. Basak, K. Tiwary, K. C. Das, Y. Shang, On the characterization of a minimal resolving set for power of paths, Mathematics, 10 (2022), 2445. https://doi.org/10.3390/math10142445 doi: 10.3390/math10142445
    [31] Y. Shang, On the number of spanning trees, the Laplacian eigenvalues, and the Laplacian Estrada index of subdivided-line graphs, Open Math., 14 (2016), 641–648. https://doi.org/10.1515/math-2016-0055 doi: 10.1515/math-2016-0055
    [32] M. Azeem, M. K. Jamil, Y. Shang, Notes on the localization of generalized hexagonal cellular networks, Mathematics, 11 (2023), 844. https://doi.org/10.3390/math11040844 doi: 10.3390/math11040844
    [33] M. Azeem, M. K. Jamil, A. Javed, A. Ahmad, Verification of some topological indices of Y-junction based nanostructures by M-polynomials, J. Math., 2022 (2022), 8238651. https://doi.org/10.1155/2022/8238651 doi: 10.1155/2022/8238651
    [34] M. Azeem, M. Imran, M. F. Nadeem, Sharp bounds on partition dimension of hexagonal Möbius ladder, J. King Saud Univ. Sci., 34 (2022), 101779. https://doi.org/10.1016/j.jksus.2021.101779 doi: 10.1016/j.jksus.2021.101779
    [35] J.-B. Liu, A. Zafari, H. Zarei, Metric dimension, minimal doubly resolving sets, and the strong metric dimension for Jellyfish graph and Cocktail party graph, Complexity, 2020 (2020), 9407456. https://doi.org/10.1155/2020/9407456 doi: 10.1155/2020/9407456
    [36] J. Kratica, M. Čangalović, V. Kovačević-Vujčić, Computing minimal doubly resolving sets of graphs, Comput. Oper. Res., 36 (2009), 2149–2159. https://doi.org/10.1016/j.cor.2008.08.002 doi: 10.1016/j.cor.2008.08.002
    [37] M. Čangalović, J. Kratica, V. Kovačević-Vujčić, M. Stojanović, Minimal doubly resolving sets of prism graphs, Optimization, 62 (2013), 1037–1043. https://doi.org/10.1080/02331934.2013.772999 doi: 10.1080/02331934.2013.772999
    [38] F. Simon Raj, A. George, on the metric dimension of silicate stars, ARPN Journal of Engineering and Applied Sciences, 10 (2015), 2187–2192.
    [39] S. Imran, M. K. Siddique, M. Imran, M. Hussain, Computing the upper bounds for metric dimension of cellulose network, Applied Mathematics E-Notes, 19 (2019), 585–605.
    [40] X. Zhang, M. Naeem, Metric dimension of crystal cubic carbon structure, J. Math., 2021 (2021), 3438611. https://doi.org/10.1155/2021/3438611 doi: 10.1155/2021/3438611
    [41] M. Ahsan, Z. Zahid, S. Zafar, A. Rafiq, M. S. Sindhu, M. Umar, Computing the metric dimension of convex polytopes related graphs, J. Math. Comput. Sci., 22 (2021), 174–188. http://doi.org/10.22436/jmcs.022.02.08 doi: 10.22436/jmcs.022.02.08
    [42] A. N. A. Koam, A. Ahmad, Barycentric subdivisions of Cayley graphs with constant edge metric dimension, IEEE Access, 8 (2020), 80624–80628. https://doi.org/10.1109/ACCESS.2020.2990109 doi: 10.1109/ACCESS.2020.2990109
    [43] Z. Hussain, M. Munir, M. Choudhary, S. M. Kang, Computing metric dimension and metric basis of the 2D lattice of alpha-boron nanotubes, Symmetry, 10 (2018), 300. https://doi.org/10.3390/sym10080300 doi: 10.3390/sym10080300
    [44] S. Krishnan, B. Rajan, Fault-tolerant resolvability of certain crystal structures, Applied Mathematics, 7 (2016), 599–604. https://doi.org/10.4236/am.2016.77055 doi: 10.4236/am.2016.77055
    [45] A. Ahmad, M. Bača, S. Sultan, Computing the metric dimension of kayak paddle graph and cycles with chord, Proyecciones (Antofagasta, On line), 39 (2020), 287–300. https://doi.org/10.22199/issn.0717-6279-2020-02-0018 doi: 10.22199/issn.0717-6279-2020-02-0018
    [46] M. K. Siddiqui, M. Naeem, N. A. Rahman, M. Imran, Computing topological indices of certain networks, J. Optoelectron. Adv. Mater., 18 (2016), 884–892.
    [47] A. R. Ashrafi, T. Doslic, M. Saheli, The eccentric connectivity index of $TUC_{4}C_{8}$ nanotubes, MATCH Commun. Math. Comput. Chem., 65 (2011), 221–230.
    [48] H. M. A. Siddiqui, M. A. Arshad, M. F. Nadeem, M. Azeem, A. Haider, M. A. Malik, Topological properties of a supramolecular chain of different complexes of N-salicylidene-L-Valine, Polycycl. Aromat. Comp., 42 (2022), 6185–6198. https://doi.org/10.1080/10406638.2021.1980060 doi: 10.1080/10406638.2021.1980060
    [49] M. M. Acholi, O. A. AbuGhneim, H. Al-Ezeh, Metric dimension of some path related graphs, Global Journal of Pure and Applied Mathematics, 13 (2017), 149–157.
    [50] M. F. Nadeem, M. Azeem, The fault-tolerant beacon set of hexagonal Möbius ladder network, Math. Method. Appl. Sci., 46 (2023), 9887–9901. https://doi.org/10.1002/mma.9091 doi: 10.1002/mma.9091
    [51] X. Zhang, M. T. A. Kanwal, M. Azeem, M. K. Jamil, M. Mukhtar, Finite vertex-based resolvability of supramolecular chain in dialkyltin, Main Group Met. Chem., 45 (2022), 255–264. https://doi.org/10.1515/mgmc-2022-0027 doi: 10.1515/mgmc-2022-0027
    [52] H. Raza, S. K. Sharma, M. Azeem, On domatic number of some rotationally-symmetric graphs, J. Math., 2023 (2023), 3816772. https://doi.org/10.1155/2023/3816772 doi: 10.1155/2023/3816772
    [53] H. Raza, S. Hayat, X.-F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010
    [54] H. Raza, S. Hayat, M. Imran, X.-F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078
    [55] H. Raza, S. Hayat, X.-F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. https://doi.org/10.1007/s12190-018-01225-y doi: 10.1007/s12190-018-01225-y
    [56] H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J.-B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114–128. https://doi.org/10.1016/j.tcs.2019.08.032 doi: 10.1016/j.tcs.2019.08.032
    [57] S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-tolerant metric dimension of interconnection networks, IEEE Access, 8 (2020), 145435–145445. https://doi.org/10.1109/ACCESS.2020.3014883 doi: 10.1109/ACCESS.2020.3014883
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1481) PDF downloads(116) Cited by(6)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog