Research article Special Issues

On a shape derivative formula for star-shaped domains using Minkowski deformation

  • Received: 24 March 2023 Revised: 17 May 2023 Accepted: 23 May 2023 Published: 13 June 2023
  • MSC : 35Q93, 46N10, 49Q10, 49Q12

  • We consider the shape derivative formula for a volume cost functional studied in previous papers where we used the Minkowski deformation and support functions in the convex setting. In this work, we extend it to some non-convex domains, namely the star-shaped ones. The formula happens to be also an extension of a well-known one in the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the formula by applying it to some model shape optimization problem.

    Citation: Abdesslam Boulkhemair, Abdelkrim Chakib, Azeddine Sadik. On a shape derivative formula for star-shaped domains using Minkowski deformation[J]. AIMS Mathematics, 2023, 8(8): 19773-19793. doi: 10.3934/math.20231008

    Related Papers:

  • We consider the shape derivative formula for a volume cost functional studied in previous papers where we used the Minkowski deformation and support functions in the convex setting. In this work, we extend it to some non-convex domains, namely the star-shaped ones. The formula happens to be also an extension of a well-known one in the geometric Brunn-Minkowski theory of convex bodies. At the end, we illustrate the formula by applying it to some model shape optimization problem.



    加载中


    [1] G. Allaire, Conception optimale de structures, Berlin: Springer, 2007. http://dx.doi.org/10.1007/978-3-540-36856-4
    [2] A. Boulkhemair, On a shape derivative formula in the Brunn-Minkowski theory, SIAM J. Control Optim., 55 (2017), 156–171. http://dx.doi.org/10.1137/15M1015844 doi: 10.1137/15M1015844
    [3] A. Boulkhemair, A. Chakib, On a shape derivative formula with respect to convex domains, J. Convex Anal., 21 (2014), 67–87.
    [4] A. Boulkhemair, A. Chakib, Erratum: on a shape derivative formula with respect to convex domains, J. Convex Anal., 22 (2015), 901–903.
    [5] A. Boulkhemair, A. Chakib, A. Nachaoui, A. Niftiyev, A. Sadik, On a numerical shape optimal design approach for a class of free boundary problems, Comput. Optim. Appl., 77 (2020), 509–537. http://dx.doi.org/10.1007/s10589-020-00212-z doi: 10.1007/s10589-020-00212-z
    [6] A. Boulkhemair, A. Chakib, A. Sadik, Geometrical variations of a state-constrained functional on star-shaped domains, Advanced Mathematical Models and Applications, 6 (2021), 73–88.
    [7] A. Boulkhemair, A. Chakib, A. Sadik, On numerical study of constrained coupled shape optimization problems based on a new shape derivative method, Numer. Meth. Part. D. E., 39 (2023), 2018–2059. http://dx.doi.org/10.1002/num.22956 doi: 10.1002/num.22956
    [8] G. Beer, Starshaped sets and the Hausdorff metric, Pacific J. Math., 61 (1975), 21–27.
    [9] P. Ciarlet, Mathematical elasticity, volume I: three-dimensional elasticity, Amsterdam: Elsevier Science Publishers, 1988.
    [10] A. Colesanti, Brunn-Minkowski inequalities for variational functionals and related problems, Adv. Math., 194 (2005), 105–140. http://dx.doi.org/10.1016/j.aim.2004.06.002 doi: 10.1016/j.aim.2004.06.002
    [11] A. Colesanti, M. Fimiani, The Minkowski problem for torsional rigidity, Indiana Univ. Math. J., 59 (2010), 1013–1039.
    [12] V. Demianov, A. Rubinov, Bases of non-smooth analysis and quasi-differential calculus (Russian), Moscow: Nauka, 1990.
    [13] V. Demianov, A. Rubinov, Quasidifferential calculus, optimization software, New York: Publications Division, 1986.
    [14] L. Evans, Measure theory and fine properties of functions, Boca Raton: CRC Press, 1992. http://dx.doi.org/10.1201/9780203747940
    [15] A. Henrot, M. Pierre, Variation et optimisation de formes. Une analyse géométrique, Berlin: Springer, 2005. http://dx.doi.org/10.1007/3-540-37689-5
    [16] L. Hörmander, Notions of convexity, Boston: Birkhäuser, 1994. http://dx.doi.org/10.1007/978-0-8176-4585-4
    [17] D. Jerison, The direct method in the calculus of variations for convex bodies, Adv. Math., 122 (1996), 262–279. http://dx.doi.org/10.1006/aima.1996.0062 doi: 10.1006/aima.1996.0062
    [18] D. Jerison, A Minkowski problem for electrostatic capacity, Acta Math., 176 (1996), 1–47. http://dx.doi.org/10.1007/BF02547334 doi: 10.1007/BF02547334
    [19] A. Niftiyev, Y. Gasimov, Control by boundaries and eigenvalue problems with variable domains (Russian), Baku: Publishing House of Baku State University, 2004.
    [20] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge: Cambridge University Press, 2013. http://dx.doi.org/10.1017/CBO9781139003858
    [21] J. Sokolowski, J. Zolésio, Introduction to shape optimization, Berlin: Springer, 1992. http://dx.doi.org/10.1007/978-3-642-58106-9
    [22] R. Webster, Convexity, Oxford: Oxford University Press, 1994.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(913) PDF downloads(49) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog