Research article

Numerical study of a nonlinear fractional chaotic Chua's circuit

  • Received: 24 July 2022 Revised: 08 October 2022 Accepted: 13 October 2022 Published: 24 October 2022
  • MSC : 35R11, 35K23

  • As an exponentially growing sensitivity to modest perturbations, chaos is pervasive in nature. Chaos is expected to provide a variety of functional purposes in both technological and biological systems. This work applies the time-fractional Caputo and Caputo-Fabrizio fractional derivatives to the Chua type nonlinear chaotic systems. A numerical analysis of the mathematical models is used to compare the chaotic behavior of systems with differential operators of integer order versus systems with fractional differential operators. Even though the chaotic behavior of the classical Chua's circuit has been extensively investigated, our generalization can highlight new aspects of system behavior and the effects of memory on the evolution of the chaotic generalized circuit.

    Citation: Nehad Ali Shah, Iftikhar Ahmed, Kanayo K. Asogwa, Azhar Ali Zafar, Wajaree Weera, Ali Akgül. Numerical study of a nonlinear fractional chaotic Chua's circuit[J]. AIMS Mathematics, 2023, 8(1): 1636-1655. doi: 10.3934/math.2023083

    Related Papers:

  • As an exponentially growing sensitivity to modest perturbations, chaos is pervasive in nature. Chaos is expected to provide a variety of functional purposes in both technological and biological systems. This work applies the time-fractional Caputo and Caputo-Fabrizio fractional derivatives to the Chua type nonlinear chaotic systems. A numerical analysis of the mathematical models is used to compare the chaotic behavior of systems with differential operators of integer order versus systems with fractional differential operators. Even though the chaotic behavior of the classical Chua's circuit has been extensively investigated, our generalization can highlight new aspects of system behavior and the effects of memory on the evolution of the chaotic generalized circuit.



    加载中


    [1] T. Yamada, H. Fujisaka, Stability theory of synchroized motion in coupled-oscillator systems, Progr. Theoret. Phys., 70 (1983), 1240–1248. https://doi.org/10.1143/PTP.70.1240 doi: 10.1143/PTP.70.1240
    [2] L. K. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821–824. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
    [3] E. Ott, C. Grebogi, J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196–1199. https://doi.org/10.1103/PhysRevLett.64.1196 doi: 10.1103/PhysRevLett.64.1196
    [4] G. Chen, X. Yu, Chaos control: Theory and applications, Springer-Verlag, Berlin, Germany, 2003.
    [5] M. A. Aziz-Alaoui, Synchronization of Chaos, Encycl. Math. Phys., 2006,213–226. https://doi.org/10.1016/B0-12-512666-2/00105-X doi: 10.1016/B0-12-512666-2/00105-X
    [6] T. T. Hartley, C. F. Lorenzo, H. K. Qammer, Chaos on a fractional Chua's system, IEEE Trans. Circ. Syst. Theor., 42 (1995), 485–490. https://doi.org/10.1109/81.404062 doi: 10.1109/81.404062
    [7] X. Gao, J. Yu, Chaos in the fractional order periodically forced complex Duffing's oscillators, Chaos Soliton. Fract., 24 (2005), 1097–1104. https://doi.org/10.1016/j.chaos.2004.09.090 doi: 10.1016/j.chaos.2004.09.090
    [8] M. P. Kennedy, O. P. Robust, AMP realization of Chua's circuit, Frequenz, 46 (1992), 66–80. https://doi.org/10.1515/FREQ.1992.46.3-4.66 doi: 10.1515/FREQ.1992.46.3-4.66
    [9] C. Li, G. Chen, Chaos and hyperchaos in the fractional-order Rossler equations, Physica A, 341 (2004), 55–61. https://doi.org/10.1016/j.physa.2004.04.113 doi: 10.1016/j.physa.2004.04.113
    [10] J. G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo's systems, Chaos Solitons. Fract., 26 (2005), 1125–1133. https://doi.org/10.1016/j.chaos.2005.02.023 doi: 10.1016/j.chaos.2005.02.023
    [11] J. G. Lu, Chaotic dynamics and synchronization of fractional-order Chua's circuits with a piecewise-linear nonlinearity, Int. J. Mod. Phys. B, 19 (2005), 3249–3259. https://doi.org/10.1142/S0217979205032115 doi: 10.1142/S0217979205032115
    [12] J. G. Lu, G. R. Chen, A note on the fractional-order Chen system, Chaos Soliton. Fract., 27 (2006), 685–688. https://doi.org/10.1016/j.chaos.2005.04.037 doi: 10.1016/j.chaos.2005.04.037
    [13] Y. Mahsud, N. A. Shah, D. Vieru, Influence of time-fractional derivatives on the boundary layer flow of Maxwell fluids, Chinese J. Phys., 55 (2017), 1340–1351. https://doi.org/10.1016/j.cjph.2017.07.006 doi: 10.1016/j.cjph.2017.07.006
    [14] M. A. Imran, N. A. Shah, I. Khan, M. Aleem, Applications of non-integer Caputo time fractional derivatives to natural convection flow subject to arbitrary velocity and Newtonian heating, Neural Comput. Appl., 30 (2018), 1589–1599. https://doi.org/10.1007/s00521-016-2741-6 doi: 10.1007/s00521-016-2741-6
    [15] W. Na, N. A. Shah, I. Tlili, I. Siddique, Maxwell fluid flow between vertical plates with damped shear and thermal flux: Free convection, Chinese J. Phys., 65 (2020), 367–376. https://doi.org/10.1016/j.cjph.2020.03.005 doi: 10.1016/j.cjph.2020.03.005
    [16] W. He, N. Chen, I. Dassios, N. A. Shah, J. D. Chung, Fractional system of Korteweg-De vries equations via Elzaki transform, Mathematics, 9 (2021), 673. https://doi.org/10.3390/math9060673 doi: 10.3390/math9060673
    [17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdo, 1993.
    [18] I. Podlubny, Fractional differential equations, Academic Press, NY, 1999.
    [19] R. Hilfer, Applications of fractional calculus in physics, World Scientific, NJ, 2000. https://doi.org/10.1142/3779
    [20] S. Wei, W. Chen, Y. C. Hon, Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models, Physica A, 462 (2016), 1244–1251. https://doi.org/10.1016/j.physa.2016.06.145 doi: 10.1016/j.physa.2016.06.145
    [21] M. Caputo, C. Cametti, Fractional derivatives in the diffusion process in heterogeneous systems: The case of transdermal patches, Math. Biosci., 291 (2017), 38–45. https://doi.org/10.1016/j.mbs.2017.07.004 doi: 10.1016/j.mbs.2017.07.004
    [22] T. Sandev, Z. Tomovski, B. Crnkovic, Generalized distributed order diffusion equations with composite time fractional derivative, Comput. Math. Appl., 73 (2017), 1028–1040. https://doi.org/10.1016/j.camwa.2016.07.009 doi: 10.1016/j.camwa.2016.07.009
    [23] V. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, Fields and Media, Springer, 2011. https://doi.org/10.1007/978-3-642-14003-7_11
    [24] M. Li, Fractal time series—A tutorial review, Math. Probl. Engin., 2010 (2010), 157264. https://doi.org/10.1155/2010/157264 doi: 10.1155/2010/157264
    [25] I. Petr´aˇs, A note on the fractional-order Chua's system, Chaos Solition. Fract., 38 (2008), 140–147. https://doi.org/10.1016/j.chaos.2006.10.054 doi: 10.1016/j.chaos.2006.10.054
    [26] W. Hu, D. Ding, Y. Zhang, N. Wang, D. Liang, Hopf bifurcation and chaos in a fractional order delayed memristor-based chaotic circuit system, Optik, 130 (2017), 189–200. https://doi.org/10.1016/j.ijleo.2016.10.123 doi: 10.1016/j.ijleo.2016.10.123
    [27] J. Palanivel, K. Suresh, S. Sabarathinam, K. Thamilmaran, Chaos in a low dimensional fractional order nonautonomous nonlinear oscillator, Chaos Solition. Fract., 95 (2017), 33–41. https://doi.org/10.1016/j.chaos.2016.12.007 doi: 10.1016/j.chaos.2016.12.007
    [28] M. F. Danca, R. Garrappa, Suppressing chaos in discontinuous systems of fractional order by active control, Appl. Math.Comput., 257 (2015), 89–102. https://doi.org/10.1016/j.amc.2014.10.133 doi: 10.1016/j.amc.2014.10.133
    [29] G. C. Wu, D. Baleanu, H. P. Xie, F. L. Chen, Chaos synchronization of fractional chaotic maps based on the stability condition, Physica A, 460 (2016), 374–383. https://doi.org/10.1016/j.physa.2016.05.045 doi: 10.1016/j.physa.2016.05.045
    [30] Z. Odibat, N. Corson, M. A. Aziz-Alaoui, A. Alsaedi, Chaos in fractional order cubic Chua system and synchronization, Int. J. Bifurcat. Chaos, 27 (2017), 1750161. https://doi.org/10.1142/S0218127417501619 doi: 10.1142/S0218127417501619
    [31] Y. Kao, Y. Li, J. H. Park, X. Chen, Mittag-Leffler synchronization of delayed fractional memristor neural networks via adaptive control, IEEE Trans. Neural Netw Learn Syst., 32 (2021), 2279–2284. https://doi.org/10.1109/TNNLS.2020.2995718 doi: 10.1109/TNNLS.2020.2995718
    [32] H. Li, Y. Kao Y. Chen, Mittag-Leffler stability of fractional-order nonlinear differential systems with state-dependent delays, IEEE T. Circuits-I, 69 (2022), 2108–2116. https://doi.org/10.1109/TCSI.2022.3142765 doi: 10.1109/TCSI.2022.3142765
    [33] Y. M. Chu, N. A. Shah, P. Agarwal, J. D. Chung, Analysis of fractional multi-dimensional Navier-Stokes equation, Adv. Differ. Equ. 91 (2021). https://doi.org/10.1186/s13662-021-03250-x doi: 10.1186/s13662-021-03250-x
    [34] N. A. Shah, E. R. El-Zahar, J. D. Chung, Fractional analysis of coupled Burgers equations within Yang Caputo-Fabrizio operator, J. Funct. Space., 2022, 6231921, https://doi.org/10.1155/2022/6231921. doi: 10.1155/2022/6231921
    [35] N. A. Shah, I. Dassios, E. R. El-Zahar, J. D. Chung, An efficient technique of fractional-order physical models involving ρ-Laplace transform, Mathematics, 10 (2022), 816. https://doi.org/10.3390/math10050816 doi: 10.3390/math10050816
    [36] D. Vieru, C. Fetecau, N. A. Shah, S-J. Yook, Unsteady natural convection flow due to fractional thermal transport and symmetric heat source/sink, Alex. Eng. J., 2022. https://doi.org/10.1016/j.aej.2022.09.027. doi: 10.1016/j.aej.2022.09.027
    [37] N. Ahmed, N. A. Shah, D. Vieru, Natural convection with damped thermal flux in a vertical circular cylinder, Chinese J. Phys., 56 (2018), 630–644. https://doi.org/10.1016/j.cjph.2018.02.007 doi: 10.1016/j.cjph.2018.02.007
    [38] T. Matsumoto, A chaos attractor from Chua's circuit, IEEE Trans. Circ. Syst., 31 (1984), 1055–1058. https://doi.org/10.1109/TCS.1984.1085459 doi: 10.1109/TCS.1984.1085459
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1472) PDF downloads(97) Cited by(12)

Article outline

Figures and Tables

Figures(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog