Research article Special Issues

On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space

  • Received: 11 August 2022 Revised: 18 September 2022 Accepted: 21 September 2022 Published: 20 October 2022
  • MSC : 26A33, 34A08

  • The existence of Atangana-Baleanu fractional-order semilinear integro-differential systems and semilinear neutral integro-differential systems with state-dependent delay in Banach spaces is investigated in this paper. We establish the existence findings by using Monch's fixed point theorem and the concept of measures of non-compactness. A functioning example is provided at the end in order to illustrate the findings reached from the theoretical study.

    Citation: M. Mallika Arjunan, Nabil Mlaiki, V. Kavitha, Thabet Abdeljawad. On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space[J]. AIMS Mathematics, 2023, 8(1): 1384-1409. doi: 10.3934/math.2023070

    Related Papers:

  • The existence of Atangana-Baleanu fractional-order semilinear integro-differential systems and semilinear neutral integro-differential systems with state-dependent delay in Banach spaces is investigated in this paper. We establish the existence findings by using Monch's fixed point theorem and the concept of measures of non-compactness. A functioning example is provided at the end in order to illustrate the findings reached from the theoretical study.



    加载中


    [1] S. Abbas, M. Benchohra, J. E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010
    [2] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Differ. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
    [3] D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
    [4] A. Alsaedi, D. Baleanu, S. Etemad, S. Rezapour, On coupled systems of time-fractional differential problems by using a new fractional derivative, J. Funct. Space., 2016 (2016), 4626940. https://doi.org/10.1155/2016/4626940 doi: 10.1155/2016/4626940
    [5] A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 1–10. https://doi.org/10.3389/fphy.2020.00064 doi: 10.3389/fphy.2020.00064
    [6] M. Al-Refai, K. Pal, New aspects of Caputo-Fabrizio fractional derivative, Progress in Fractional Differentiation and Applications, 5 (2019), 157–166. https://doi.org/10.18576/pfda/050206 doi: 10.18576/pfda/050206
    [7] N. Al-Salti, E. Karimov, K. Sadarangani, On a differential equation with Caputo-Fabrizio fractional derivative of order $1 < \beta>2$ and application to mass-spring-damper system, Progress in Fractional Differentiation and Applications, 2 (2016), 257–263. https://doi.org/10.18576/pfda/020403 doi: 10.18576/pfda/020403
    [8] A. Atangana, Fractional operators with constant and variable order with application to geo-hydrology, San Diego: Academic Press, 2018. https://doi.org/10.1016/C2015-0-05711-2
    [9] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [10] G. M. Bahaa, A. Hamiaz, Optimality conditions for fractional differential inclusions with nonsingular Mittag–Leffler kernel, Adv. Differ. Equ., 2018 (2018), 257. https://doi.org/10.1186/s13662-018-1706-8 doi: 10.1186/s13662-018-1706-8
    [11] P. Balasubramaniam, Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111276. https://doi.org/10.1016/j.chaos.2021.111276 doi: 10.1016/j.chaos.2021.111276
    [12] D. Baleanu, R. P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021 (2021), 117. https://doi.org/10.1186/s13662-021-03270-7 doi: 10.1186/s13662-021-03270-7
    [13] J. Banaś, K. Goebel, Measures of noncompactness in Banach spaces, New York: Marcel Dekker, 1980.
    [14] E. Bas, R. Ozarslan, Real world applications of fractional models by Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 116 (2018), 121–125. https://doi.org/10.1016/j.chaos.2018.09.019 doi: 10.1016/j.chaos.2018.09.019
    [15] M. Benchora, I. Medjadj, Measures of noncompactness and partial functional differential equations with state-dependent delay, Differ. Equ. Dyn. Syst., 26 (2018), 139–155. https://doi.org/10.1007/s12591-016-0325-7 doi: 10.1007/s12591-016-0325-7
    [16] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340–1350. https://doi.org/10.1016/j.jmaa.2007.06.021 doi: 10.1016/j.jmaa.2007.06.021
    [17] H. Berrezoug, J. Henderson, A. Ouahab, Existence and uniqueness of solutions for a system of impulsive differential equations on the half-line, Journal of Nonlinear Functional Analysis, 2017 (2017), 38. https://doi.org/10.23952/jnfa.2017.38 doi: 10.23952/jnfa.2017.38
    [18] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progress in Fractional Differentiation and Applications, 2 (2016), 1–11. https://doi.org/10.18576/pfda/020101 doi: 10.18576/pfda/020101
    [19] Y.-K. Chang, A. Anguraj, M. Mallika Arjunan, Existence results for impulsive neutral functional differential equations with infinite delay, Nonlinear Anal. Hybrid Syst., 2 (2008), 209–218. https://doi.org/10.1016/j.nahs.2007.10.001 doi: 10.1016/j.nahs.2007.10.001
    [20] P. Chen, Y. Li, Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731–744. https://doi.org/10.1007/s00025-012-0230-5 doi: 10.1007/s00025-012-0230-5
    [21] P. Chen, X. Zhang, Y. Li, Existence of mild solutions to partial differential equations with non-instantaneous impulses, Electronic Journal of Differential Equations, 2016 (2016), 541.
    [22] J. Dabas, A. Chauhan, M. Kumar, Existence of the mild solutions for impulsive fractional equations with infinite delay, International Journal of Differential Equations, 2011 (2011), 793023. https://doi.org/10.1155/2011/793023 doi: 10.1155/2011/793023
    [23] S. Das, D. N. Pandey, N. Sukavanam, Existence of solution and approximate controllability for neutral differential equation with state dependent delay, International Journal of Partial Differential Equations, 2014 (2014), 787092. https://doi.org/10.1155/2014/787092 doi: 10.1155/2014/787092
    [24] K. Deimling, Multivalued differential equations, Berlin: Walter de Gruyter, 1992.
    [25] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A.-H. Abdel-Aty, et al., A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality, Results Phys., 38 (2022), 105647. https://doi.org/10.1016/j.rinp.2022.105647 doi: 10.1016/j.rinp.2022.105647
    [26] J. Grayna, V. Kavitha, G. Soumya, A study on PC-asymptotically almost automorphic solution of impulsive Fredholm-Volterra integro differential equation with fractional order, Journal of Advanced Research in Dynamical & Control Systems, 11 (2019), 259–270. https://doi.org/10.5373/JARDCS/V11/20192510 doi: 10.5373/JARDCS/V11/20192510
    [27] M. Haase, The functional calculus for sectorial operators, Basel: Birkhäuser, 2006. https://doi.org/10.1007/3-7643-7698-8
    [28] J. K. Hale, Theory of functional differential equations, New York: Springer, 1977. https://doi.org/10.1007/978-1-4612-9892-2
    [29] J. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkcialaj Ekvacioj, 21 (1978), 11–41.
    [30] V. Kavitha, M. Mallika Arjunan, D. Baleanu, Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel, AIMS Mathematics, 7 (2022), 9353–9372. https://doi.org/10.3934/math.2022519 doi: 10.3934/math.2022519
    [31] V. Kavitha, D. Baleanu, J. Grayna, Measure pseudo almost automorphic solution to second order fractional impulsive neutral differential equation, AIMS Mathematics, 6 (2021), 8352–8366. https://doi.org/10.3934/math.2021484 doi: 10.3934/math.2021484
    [32] V. Kavitha, P. Z. Wang, R. Murugesu, Existence of weighted pseudo almost automorphic mild solutions to fractional integro-differential equations, Journal of Fractional Calculus and Applications, 4 (2013), 37–55.
    [33] A. Kumar, D. N. Pandey, Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions, Chaos Soliton. Fract., 132 (2020), 109551. https://doi.org/10.1016/j.chaos.2019.109551 doi: 10.1016/j.chaos.2019.109551
    [34] K. Logeswari, C. Ravichandran, A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana-Baleanu derivative, Physica A, 544 (2020), 123454. https://doi.org/10.1016/j.physa.2019.123454 doi: 10.1016/j.physa.2019.123454
    [35] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 87–92.
    [36] M. Mallika Arjunan, A. Hamiaz, V. Kavitha, Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators, Chaos Soliton. Fract., 149 (2021), 111042. https://doi.org/10.1016/j.chaos.2021.111042 doi: 10.1016/j.chaos.2021.111042
    [37] M. Mallika Arjunan, T. Abdeljawad, V. Kavitha, A. Yousef, On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses, Chaos Soliton. Fract., 148 (2021), 111075. https://doi.org/10.1016/j.chaos.2021.111075 doi: 10.1016/j.chaos.2021.111075
    [38] M. Mallika Arjunan, V. Kavitha, Existence results for Atangana-Baleanu fractional integro-differential systems with non-instantaneous impulses, Nonlinear Studies, 28 (2021), 865–877.
    [39] M. Mallika Arjunan, V. Kavitha, D. Baleanu, A new existence results on fractional differential inclusions with state-dependent delay and Mittag-Leffler kernel in Banach space, Analele Stiintifice ale Universitatii Ovidius Constanta-Seria Matematica, 30 (2022), 5–24. https://doi.org/0.2478/auom-2022-0016
    [40] M. Mallika Arjunan, P. Anbalagan, Q. Al‐Mdallal, Robust uniform stability criteria for fractional‐order gene regulatory networks with leakage delays, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.8255
    [41] H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. Theor., 4 (1980), 985–999. https://doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3
    [42] E. J. Moore, S. Sirisubtawee, S. Koonprasert, A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ., 2019 (2019), 200. https://doi.org/10.1186/s13662-019-2138-9 doi: 10.1186/s13662-019-2138-9
    [43] E. H. Morales, M. A. McKibben, H. R. Henriquez, Existence results for partial neutral functional differential equations with state-dependent delay, Math. Comput. Model., 49 (2009), 1260–1267. https://doi.org/10.1016/j.mcm.2008.07.011 doi: 10.1016/j.mcm.2008.07.011
    [44] D. N. Pandey, S. Das, N. Sukavanam, Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses, International Journal of Nonlinear Science, 18 (2014), 145–155.
    [45] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [46] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998.
    [47] C. Ravichandran, K. Logeswari, F. Jarad, New results on existence in the framework of Atangana-Baleanu derivative for fractional integro-differential equations, Chaos Soliton. Fract., 125 (2019), 194–200. https://doi.org/10.1016/j.chaos.2019.05.014 doi: 10.1016/j.chaos.2019.05.014
    [48] X. B. Shu, Y. Lai, Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal. Theor., 74 (2011), 2003–2011. https://doi.org/10.1016/j.na.2010.11.007 doi: 10.1016/j.na.2010.11.007
    [49] G. Siracusa, H. R. Henriquez, C. Cuevas, Existence results for fractional integro-differential inclusions with state-dependent delay, Nonautonomous Dynamical Systems, 4 (2017), 62–77. https://doi.org/10.1515/msds-2017-0007 doi: 10.1515/msds-2017-0007
    [50] W. K. Williams, V. Vijayakumar, Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems, Math. Method. Appl. Sci., in press. https://doi.org/10.1002/mma.7754
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1449) PDF downloads(129) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog