Research article Special Issues

On a class of fixed points for set contractions on partial metric spaces with a digraph

  • Received: 27 July 2022 Revised: 07 October 2022 Accepted: 10 October 2022 Published: 19 October 2022
  • MSC : 47H04, 47H07, 47H10

  • We investigate the existence of fixed point problems on a partial metric space. The results obtained are for set contractions in the domain of sets and the pattern for the partial metric space is constructed on a directed graph. Essentially, our main strategy is to employ generalized $ \phi $-contractions in order to prove our results, where the fixed points are investigated with a graph structure. Moreover, we state and prove the well-posedness of fixed point based problems of the generalized $ \phi $-contractive operator in the framework of a partial metric space. We illustrate the main results in this manuscript by providing several examples.

    Citation: Talat Nazir, Zakaria Ali, Shahin Nosrat Jogan, Manuel de la Sen. On a class of fixed points for set contractions on partial metric spaces with a digraph[J]. AIMS Mathematics, 2023, 8(1): 1304-1328. doi: 10.3934/math.2023065

    Related Papers:

  • We investigate the existence of fixed point problems on a partial metric space. The results obtained are for set contractions in the domain of sets and the pattern for the partial metric space is constructed on a directed graph. Essentially, our main strategy is to employ generalized $ \phi $-contractions in order to prove our results, where the fixed points are investigated with a graph structure. Moreover, we state and prove the well-posedness of fixed point based problems of the generalized $ \phi $-contractive operator in the framework of a partial metric space. We illustrate the main results in this manuscript by providing several examples.



    加载中


    [1] M. Abbas, M. R. Alfuraidan, A. R. Khan, T. Nazir, Fixed point results for set-contractions on metric spaces with a directed graph, Fixed Point Theory Appl., 2015 (2015), 14. https://doi.org/10.1186/s13663-015-0263-z doi: 10.1186/s13663-015-0263-z
    [2] M. Abbas, M. R. Alfuraidan, T. Nazir, M. Rashed, Common fixed points of multivalued $F$-contractions on metric spaces with a directed graph, Carpathian J. Math., 32 (2016), 1–12.
    [3] M. Abbas, B. Ali, Fixed point of Suzuki-Zamfirescu hybrid contractions in partial metric spaces via partial Hausdorff metric, Fixed Point Theory Appl., 2013 (2013), 1–21. https://doi.org/10.1186/1687-1812-2013-21 doi: 10.1186/1687-1812-2013-21
    [4] M. Abbas, V. Parvaneh, A. Razani, Periodic points of $T$-Ciric generalized contraction mappings in ordered metric spaces, Georgian Math. J., 19 (2012), 597–610. https://doi.org/10.1515/gmj-2012-0036 doi: 10.1515/gmj-2012-0036
    [5] S. M. A. Aleomraninejad, S. Rezapour, N. Shahzad, Some fixed point results on a metric space with a graph, Topol. Appl., 159 (2012), 659–663. https://doi.org/10.1016/j.topol.2011.10.013 doi: 10.1016/j.topol.2011.10.013
    [6] N. Assad, W. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43 (1972), 553–562. http://dx.doi.org/10.2140/pjm.1972.43.553 doi: 10.2140/pjm.1972.43.553
    [7] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), 508730. https://doi.org/10.1155/2011/508730 doi: 10.1155/2011/508730
    [8] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl., 157 (2010), 2778–2785. https://doi.org/10.1016/j.topol.2010.08.017 doi: 10.1016/j.topol.2010.08.017
    [9] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
    [10] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations inté grales, Fund. Math., 3 (1922), 133–181.
    [11] F. Bojor, Fixed point of $\varphi $-contraction in metric spaces endowed with a graph, Ann. Univ. Craiova Ser. Mat. Inform., 37 (2010), 85–92. https://doi.org/10.52846/ami.v37i4.374 doi: 10.52846/ami.v37i4.374
    [12] C. Chifu, G. Petruşel, Generalized contractions in metric spaces endowed with a graph, Fixed Point Theory Appl., 2012 (2012), 1–9. https://doi.org/10.1186/1687-1812-2012-161 doi: 10.1186/1687-1812-2012-161
    [13] N. Hussain, J. R. Roshan, V. Parvaneh, A. Latif, A unification of $G$-metric, partial metric, and $b$-metric spaces, Abstr. Appl. Anal., 2014 (2014), 180698. https://doi.org/10.1155/2014/180698 doi: 10.1155/2014/180698
    [14] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (2008), 1359–1373. https://doi.org/10.1090/S0002-9939-07-09110-1 doi: 10.1090/S0002-9939-07-09110-1
    [15] J. Jachymski, I. Jóźwik, Nonlinear contractive conditions: A comparison and related problems, Banach Center Publ., 1 (2007), 123–146. https://doi.org/10.4064/bc77-0-10 doi: 10.4064/bc77-0-10
    [16] A. Latif, T. Nazir, M. A. Kutbi, Common fixed point results for class of set-contraction mappings endowed with a directed graph, RACSAM, 113 (2019), 3207–3222. https://doi.org/10.1007/s13398-019-00689-2 doi: 10.1007/s13398-019-00689-2
    [17] A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 363–377. http://dx.doi.org/10.22436/jnsa.008.04.09 doi: 10.22436/jnsa.008.04.09
    [18] G. Lin, X. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008
    [19] S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
    [20] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly $T$-Chatterjea and weakly $T$-Kannan contractions in $b$-metric spaces, J. Inequal. Appl., 2014 (2014), 46. https://doi.org/10.1186/1029-242X-2014-46 doi: 10.1186/1029-242X-2014-46
    [21] A. Nicolae, D. O'Regan, A. Petruşel, Fixed point theorems for singlevalued and multivalued generalized contractions in metric spaces endowed with a graph, J. Georgian Math. Soc., 18 (2011), 307–327. https://doi.org/10.1515/gmj.2011.0019 doi: 10.1515/gmj.2011.0019
    [22] J. J. Nieto, R. Rodriguez-López, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223–239. http://dx.doi.org/10.1007/s11083-005-9018-5 doi: 10.1007/s11083-005-9018-5
    [23] A. Pansuwan, W. Sintunavarat, V. Parvaneh, Some fixed point theorems for ($\alpha, \theta, k$)-contractive multi-valued mappings with some applications, Fixed Point Theory Appl., 2015 (2015), 132. https://doi.org/10.1186/s13663-015-0385-3 doi: 10.1186/s13663-015-0385-3
    [24] V. Parvaneh, N. Hussain, Z. Kadelburg, Generalized wardowski type fixed point theorems via $\alpha$-admissible $FG$-contractions in $b$-metric spaces, Acta Math. Sci., 36 (2016), 1445–1456. https://doi.org/10.1016/S0252-9602(16)30080-7 doi: 10.1016/S0252-9602(16)30080-7
    [25] A. M. C. Ran, M. C. Reuring, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Am. Math. Soc., 132 (2004), 1435–1443. https://doi.org/10.1090/S0002-9939-03-07220-4 doi: 10.1090/S0002-9939-03-07220-4
    [26] S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topol. Appl., 153 (2005), 948–962. https://doi.org/10.1016/j.topol.2005.01.023 doi: 10.1016/j.topol.2005.01.023
    [27] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), 493298. https://doi.org/10.1155/2010/493298 doi: 10.1155/2010/493298
    [28] J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenovic, Common fixed point theorems for three maps in discontinuous $G_b$-metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7
    [29] M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theor. Comput. Sci., 315 (2004), 135–149.
    [30] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Top., 6 (2005), 229–240. https://doi.org/10.1016/j.tcs.2003.11.016 doi: 10.1016/j.tcs.2003.11.016
    [31] Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062
    [32] Q. Zhang, Y. Song, Fixed point theory for generalized $\varphi $-weak contractions, Appl. Math. Lett., 22 (2009), 75–78. https://doi.org/10.1016/j.aml.2008.02.007 doi: 10.1016/j.aml.2008.02.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1558) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog