Research article

Stability of nonlinear population systems with individual scale and migration

  • Received: 17 June 2022 Revised: 07 September 2022 Accepted: 18 September 2022 Published: 27 September 2022
  • MSC : 34D20, 34M45, 93D20

  • In this paper, we study the stability of a nonlinear population system with a weighted total size of scale structure and migration in a polluted environment, where fertility and mortality depend on the density in different ways. We first prove the existence and uniqueness of the equilibrium point via a contraction mapping and give the expression for the equilibrium point. Some conditions for asymptotic stability and instability are presented by means of a characteristic equation. When the effect of density restriction on mortality is not considered, the threshold value of equilibrium stability can be obtained as $ \Lambda = 0. $ When $ \Lambda < 0, $ the equilibrium is asymptotically stable, and when $ \Lambda > 0, $ the equilibrium is unstable. In addition, the upwind difference method is used to discrete the model, and two examples are given to show the evolution of species.

    Citation: Wei Gong, Zhanping Wang. Stability of nonlinear population systems with individual scale and migration[J]. AIMS Mathematics, 2023, 8(1): 125-147. doi: 10.3934/math.2023006

    Related Papers:

  • In this paper, we study the stability of a nonlinear population system with a weighted total size of scale structure and migration in a polluted environment, where fertility and mortality depend on the density in different ways. We first prove the existence and uniqueness of the equilibrium point via a contraction mapping and give the expression for the equilibrium point. Some conditions for asymptotic stability and instability are presented by means of a characteristic equation. When the effect of density restriction on mortality is not considered, the threshold value of equilibrium stability can be obtained as $ \Lambda = 0. $ When $ \Lambda < 0, $ the equilibrium is asymptotically stable, and when $ \Lambda > 0, $ the equilibrium is unstable. In addition, the upwind difference method is used to discrete the model, and two examples are given to show the evolution of species.



    加载中


    [1] F. R. Sharpe, A. Lotka, A problem in age-distribution, In: Mathematical demography, Berlin: Springer, 1977. https://doi.org/10.1007/978-3-642-81046-6_13
    [2] M. E. Gurtin, R. C. Maccamy, Nonlinear age-dependent population dynamics, Arch. Rational Mech. Anal., 54 (1974), 281–300. https://doi.org/10.1007/bf00250793 doi: 10.1007/bf00250793
    [3] K. Kamioka, Mathematical analysis of an age-structured population model with space-limited recruitment, Math. Biosci., 198 (2005), 27–56. https://doi.org/10.1016/j.mbs.2005.08.006 doi: 10.1016/j.mbs.2005.08.006
    [4] V. Barbu, M. Iannelli, Optimal control of population dynamics, J. Optimiz. Theory App., 102 (1999), 1–14. https://doi.org/10.1023/A:1021865709529 doi: 10.1023/A:1021865709529
    [5] R. Fister, Optimal control of harvesting in a predator-prey parabolic system, Houston J. Math., 23 (1997), 341–355.
    [6] K. R. Fister, S. Lcnhart, Optimal control of a competitive system with age-structure, J. Math. Anal. Appl., 291 (2004), 526–537. https://doi.org/10.1016/j.jmaa.2003.11.031 doi: 10.1016/j.jmaa.2003.11.031
    [7] B. Zhang, L. Zhai, J. Bintz, S. M. Lenhart, W. Valega-Mackenzie, J. D. Van Dyken, The optimal controlling strategy on a dispersing population in a two-patch system: Experimental and theoretical perspectives, J. Theor. Biol., 528 (2021), 110835. https://doi.org/10.1016/j.jtbi.2021.110835 doi: 10.1016/j.jtbi.2021.110835
    [8] H. Kang, S. Ruan, Nonlinear age-structured population models with nonlocal diffusion and nonlocal boundary conditions, J. Differ. Equ., 278 (2021), 430–462. https://doi.org/10.1016/j.jde.2021.01.004 doi: 10.1016/j.jde.2021.01.004
    [9] I. López, Z. Varga, M. Gámez, J. Garay, Monitoring in a discrete-time nonlinear age-structured population model with changing environment, Mathematics, 10 (2022), 2707. https://doi.org/10.3390/math10152707 doi: 10.3390/math10152707
    [10] H. Kiliç, N. Topsakal, F. Kangalgîl, Stability analysis of a discrete time prey-predator population model with immigration, Cumhur. Sci. J., 41 (2020), 884–900. https://doi.org/10.17776/csj.779203 doi: 10.17776/csj.779203
    [11] Z. R. He, Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal. Real, 13 (2012), 1369–1378. https://doi.org/10.1016/j.nonrwa.2011.11.001 doi: 10.1016/j.nonrwa.2011.11.001
    [12] Y. Liu, Z. R. He, Stability results for a size-structured population model with resources-dependence and inflow, J. Math. Anal. Appl., 360 (2009), 665–675. https://doi.org/10.1016/j.jmaa.2009.07.005 doi: 10.1016/j.jmaa.2009.07.005
    [13] K. R. Fister, S. Lenhart, Optimal harvesting in an age-structured predator-prey model, Appl. Math. Optim., 54 (2006), 1–15. https://doi.org/10.1007/s00245-005-0847-9 doi: 10.1007/s00245-005-0847-9
    [14] F. Dercole, K. Niklas, R. Rand, Self-thinning and community persistence in a simple size-structured dynamical model of plant growth, J. Math. Biol., 51 (2005), 333–354. https://doi.org/10.1007/s00285-005-0322-x doi: 10.1007/s00285-005-0322-x
    [15] À. Calsina, J. Salda$\ddot {\rm{n}}$a, Asymptotic behaviour of a model of hierarchically structured population dynamics, J. Math. Biol., 35 (1997), 967–987. https://doi.org/10.1007/s002850050085 doi: 10.1007/s002850050085
    [16] À. Calsina, M. Sanchón, Stability and instability of equilibria of an equation of size structured population dynamics, J. Math. Anal. Appl., 286 (2003), 435–452. https://doi.org/10.1016/s0022-247x(03)00464-5 doi: 10.1016/s0022-247x(03)00464-5
    [17] J. Z. Farkas, T. Hagen, Stability and regularity results for a size-structured population model, J. Math. Anal. Appl., 328 (2007), 119–136. https://doi.org/10.1016/j.jmaa.2006.05.032 doi: 10.1016/j.jmaa.2006.05.032
    [18] J. Z. Farkas, T. Hagen, Linear stability and positivity results for a generalized size-structured Daphnia model with inflow, Appl. Anal., 86 (2007), 1087–1103. https://doi.org/10.1080/00036810701545634 doi: 10.1080/00036810701545634
    [19] J. Z. Farkas, Structured populations: The stabilizing effect of the inflow of newborns from an external source and the net growth rate, Appl. Math. Comput., 199 (2008), 547–558. https://doi.org/10.1016/j.amc.2007.10.018 doi: 10.1016/j.amc.2007.10.018
    [20] H. Kang, X. Huo, S. Ruan, Nonlinear physiologically-structured population models with two internal variables, J. Nonlinear Sci., 30 (2020), 2847–2884. https://doi.org/10.1007/s00332-020-09638-5 doi: 10.1007/s00332-020-09638-5
    [21] J. A. Ademosu, S. Olaniyi, S. O. Adewale. Stability analysis and optimal measure for controlling eco-epidemiological dynamics of prey-predator model, Adv. Syst. Sci. Appl., 21 (2021), 83–103. https://doi.org/10.25728/assa.2021.21.2.1064 doi: 10.25728/assa.2021.21.2.1064
    [22] A. Singh, B. Emerick, Generalized stability conditions for host-parasitoid population dynamics: Implications for biological control, Ecol. Model., 456 (2021), 109656. https://doi.org/10.1016/j.ecolmodel.2021.109656 doi: 10.1016/j.ecolmodel.2021.109656
    [23] H. Molla, M. Rahman, S. Sarwardi, Dynamical study of a prey-predator model incorporating nonlinear prey refuge and additive Allee effect acting on prey species, Model. Earth Syst. Environ., 7 (2021), 749–765. https://doi.org/10.1007/s40808-020-01049-5 doi: 10.1007/s40808-020-01049-5
    [24] P. Wu, Z. R. He, Optimal balancing harvesting of size-structured populations with elastic growth (Chinese), Appl. Math., 30 (2017), 162–167. https://doi.org/10.13642/j.cnki.42-1184/o1.2017.01.020 doi: 10.13642/j.cnki.42-1184/o1.2017.01.020
    [25] M. Liu, K. Wang, Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input, Chaos Soliton. Fract., 45 (2012), 1541–1550. https://doi.org/10.1016/j.chaos.2012.08.011 doi: 10.1016/j.chaos.2012.08.011
    [26] Q. Quan, W. Y. Tang, J. Jiao, Y. Wang, Dynamics of a new stage-structured population model with transient and nontransient impulsive effects in a polluted environment, Adv. Differ. Equ., 2021 (2021), 518. https://doi.org/10.1186/s13662-021-03667-4 doi: 10.1186/s13662-021-03667-4
    [27] F. Y. Wei, L. H. Chen, Psychological effect on single-species population models in a polluted environment, Math. Biosci., 290 (2017), 22–30. https://doi.org/10.1016/j.mbs.2017.05.011 doi: 10.1016/j.mbs.2017.05.011
    [28] A. Ma, S. Lyu, Q. Zhang, Stationary distribution and optimal control of a stochastic population model in a polluted environment, Math. Biosci. Eng., 19 (2022), 11260–11280. https://doi.org/10.3934/mbe.2022525 doi: 10.3934/mbe.2022525
    [29] W. Gong, Z. P. Wang, Optimal control of nonlinear periodic population dynamic systems with individual scale in a polluted environment (Chinese), Appl. Math., 33 (2020), 789–799. https://doi.org/10.13642/j.cnki.42-1184/o1.2020.03.025 doi: 10.13642/j.cnki.42-1184/o1.2020.03.025
    [30] F. Z. Farkas, Stability conditions for a non-linear size-structured model, Nonlinear Anal. Real, 6 (2005), 962–969. https://doi.org/10.1016/j.nonrwa.2004.06.002 doi: 10.1016/j.nonrwa.2004.06.002
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1341) PDF downloads(151) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog