Research article

Numerical solution of fractional variational and optimal control problems via fractional-order Chelyshkov functions

  • Received: 05 May 2022 Revised: 04 July 2022 Accepted: 18 July 2022 Published: 28 July 2022
  • MSC : 34H05, 49M05, 65K10, 65L60

  • In this paper, we present a new numerical method based on the fractional-order Chelyshkov functions (FCHFs) for solving fractional variational problems (FVPs) and fractional optimal control problems (FOCPs). The fractional derivatives are considered in the Caputo sense. The operational matrix of fractional integral for FCHFs, together with the Lagrange multiplier method, are used to reduce the fractional optimization problem into a system of algebraic equations. Some results concerning the approximation errors are discussed and the convergence of the presented method is also demonstrated. The performance of the introduced method is tested through several examples. Some comparisons with recent numerical methods are introduced to show the accuracy and effectiveness of the presented method.

    Citation: A. I. Ahmed, M. S. Al-Sharif, M. S. Salim, T. A. Al-Ahmary. Numerical solution of fractional variational and optimal control problems via fractional-order Chelyshkov functions[J]. AIMS Mathematics, 2022, 7(9): 17418-17443. doi: 10.3934/math.2022960

    Related Papers:

  • In this paper, we present a new numerical method based on the fractional-order Chelyshkov functions (FCHFs) for solving fractional variational problems (FVPs) and fractional optimal control problems (FOCPs). The fractional derivatives are considered in the Caputo sense. The operational matrix of fractional integral for FCHFs, together with the Lagrange multiplier method, are used to reduce the fractional optimization problem into a system of algebraic equations. Some results concerning the approximation errors are discussed and the convergence of the presented method is also demonstrated. The performance of the introduced method is tested through several examples. Some comparisons with recent numerical methods are introduced to show the accuracy and effectiveness of the presented method.



    加载中


    [1] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl., 272 (2002), 368–379. https://doi.org/10.1016/S0022-247X(02)00180-4
    [2] O. P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6
    [3] O. P. Agrawal, A quadratic numerical scheme for fractional optimal control problems, J. Dyn. Sys., Meas., Control, 130 (2008), 011010. https://doi.org/10.1115/1.2814055 doi: 10.1115/1.2814055
    [4] O. P. Agrawal, D. Baleanu, A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, J. Vib. Control, 13 (2007), 1269–1281. https://doi.org/10.1177/1077546307077467 doi: 10.1177/1077546307077467
    [5] S. Ahdiaghdam, S. Shahmorad, K. Ivaz, Approximate solution of dual integral equations using Chebyshev polynomials, Int. J. Comput. Math., 94 (2017), 493–502. https://doi.org/10.1080/00207160.2015.1114611 doi: 10.1080/00207160.2015.1114611
    [6] A. I. Ahmed, T. A. Al-Ahmary, Fractional-order Chelyshkov collocation method for solving systems of fractional differential equations, Math. Probl. Eng., 2022 (2022), 4862650. https://doi.org/10.1155/2022/4862650 doi: 10.1155/2022/4862650
    [7] T. Akbarian, M. Keyanpour, A new approach to the numerical solution of fractional order optimal control problems, AAM, 8 (2013), 12.
    [8] A. Alizadeh, S. Effati, An iterative approach for solving fractional optimal control problems, J. Vib. Control, 24 (2018), 18–36. https://doi.org/10.1177/1077546316633391 doi: 10.1177/1077546316633391
    [9] R. Almeida, A. B. Malinowska, D. F. Torres, A fractional calculus of variations for multiple integrals with application to vibrating string, J. Math. Phys., 51 (2010), 033503. https://doi.org/10.1063/1.3319559
    [10] R. Almeida, H. Khosravian-Arab, M. Shamsi, A generalized fractional variational problem depending on indefinite integrals: Euler-Lagrange equation and numerical solution, J. Vib. Control, 19 (2013), 2177–2186. https://doi.org/10.1177/1077546312458818 doi: 10.1177/1077546312458818
    [11] M. S. Al-Sharif, A. I. Ahmed, M. S. Salim, An integral operational matrix of fractional-order Chelyshkov functions and its applications, Symmetry, 12 (2020), 1755. https://doi.org/10.3390/sym12111755 doi: 10.3390/sym12111755
    [12] M. Behruzivar, F. Ahmedpour, Comparative study on solving fractional differential equations via shifted Jacobi collocation method, B. Iran. Math. Soc., 43 (2017), 535–560.
    [13] D. P. Bertsekas, Dynamic programming and optimal control, 4 Eds., Massachusetts: Athena Scientific, 2017.
    [14] A. H. Bhrawy, S. S. Ezz-Eldien, E. H. Doha, M. A. Abdelkawy, D. Baleanu, Solving fractional optimal control problems within a Chebyshev-Legendre operational technique, Int. J. Control, 90 (2017), 1230–1244. https://doi.org/10.1080/00207179.2016.1278267 doi: 10.1080/00207179.2016.1278267
    [15] Z. D. Cen, A. B. Le, A. M. Xu, A robust numerical method for a fractional differential equation, Appl. Math. Comput., 315 (2017), 445–452. https://doi.org/10.1016/j.amc.2017.08.011
    [16] V. S. Chelyshkov, Alternative orthogonal polynomials and quadratures, Electron. T. Numer. Ana., 25 (2006), 17–26.
    [17] H. Dehestani, Y. Ordokhani, M. Razzaghi, Fractional-order Bessel wavelet functions for solving variable order fractional optimal control problems with estimation error, Int. J. Syst. Sci., 51 (2020), 1032–1052. https://doi.org/10.1080/00207721.2020.1746980
    [18] K. D. Park, The analysis of fractional differential equations, Berlin: Springer, 2010.
    [19] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, A new Jacobi operational matrix: An application for solving fractional differential equations, Appl. Math. Model., 36 (2012), 4931–4943. https://doi.org/10.1016/j.apm.2011.12.031
    [20] E. H. Doha, A. H. Bhrawy, D. Baleanu, S. S. Ezz-Eldien, R. M. Hafez, An efficient numerical scheme based on the shifted orthonormal Jacobi polynomials for solving fractional optimal control problems, Adv. Differ. Equ., 2015 (2015), 15. https://doi.org/10.1186/s13662-014-0344-z
    [21] N. Ejlali, S. M. Hosseini, A pseudospectral method for fractional optimal control problems, J. Optim. Theory Appl., 174 (2017), 83–107. https://doi.org/10.1007/s10957-016-0936-8 doi: 10.1007/s10957-016-0936-8
    [22] I. El-Kalla, Error estimate of the series solution to a class of nonlinear fractional differential equations, Commun. Nonlinear Sci., 16 (2011), 1408–1413. https://doi.org/10.1016/j.cnsns.2010.05.030 doi: 10.1016/j.cnsns.2010.05.030
    [23] A. A. El-Kalaawy, E. H. Doha, S. S. Ezz-Eldien, M. A. Abdelkawy, R. M. Hafez, A. Z. M. Amin, et al., A computationally efficient method for a class of fractional variational and optimal control problems using fractional Gegenbauer functions, Rom. Rep. Phys., 70 (2018), 90109.
    [24] V. J. Ervin, J. P. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Meth. Part. D. E., 22 (2006), 558–576. https://doi.org/10.1002/num.20112 doi: 10.1002/num.20112
    [25] S. S. Ezz-Eldien, New quadrature approach based on operational matrix for solving a class of fractional variational problems, J. Comput. Phys., 317 (2016), 362–381. https://doi.org/10.1016/j.jcp.2016.04.045
    [26] I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
    [27] H. Hassani, J. T. Machado, E. Naraghirad, Generalized shifted Chebyshev polynomials for fractional optimal control problems, Commun. Nonlinear Sci., 75 (2019), 50–61. https://doi.org/10.1016/j.cnsns.2019.03.013 doi: 10.1016/j.cnsns.2019.03.013
    [28] M. H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin I., 355 (2018), 4970–4995. https://doi.org/10.1016/j.jfranklin.2018.05.025 doi: 10.1016/j.jfranklin.2018.05.025
    [29] M. H. Heydari, Chebyshev cardinal functions for a new class of nonlinear optimal control problems generated by Atangana-Baleanu-Caputo variable-order fractional derivative, Chaos Soliton. Fract., 130 (2020), 109401. https://doi.org/10.1016/j.chaos.2019.109401 doi: 10.1016/j.chaos.2019.109401
    [30] C. H. Hsiao, Haar wavelet direct method for solving variational problems, Math. Comput. Simulat., 64 (2004), 569–585. https://doi.org/10.1016/j.matcom.2003.11.012 doi: 10.1016/j.matcom.2003.11.012
    [31] S. Jahanshahi, D. F. Torres, A simple accurate method for solving fractional variational and optimal control problems, J. Optim. Theory Appl., 174 (2017), 156–175. https://doi.org/10.1007/s10957-016-0884-3
    [32] A. S. Leong, D. E. Quevedo, S. Dey, Optimal control of energy resources for state estimation over wireless channels, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-65614-4
    [33] W. Li, S. Wang, V. Rehbock, Numerical solution of fractional optimal control, J. Optim. Theory Appl., 180 (2019), 556–573. https://doi.org/10.1007/s10957-018-1418-y
    [34] H. R. Marzban, F. Malakoutikhah, Solution of delay fractional optimal control problems using a hybrid of block-pulse functions and orthonormal Taylor polynomials, J. Franklin I., 356 (2019), 8182–8215. https://doi.org/10.1016/j.jfranklin.2019.07.010 doi: 10.1016/j.jfranklin.2019.07.010
    [35] Z. J. Meng, M. X. Yi, J. Huang, L. Song, Numerical solutions of nonlinear fractional differential equations by alternative Legendre polynomials, Appl. Math. Comput., 336 (2018), 454–464. https://doi.org/10.1016/j.amc.2018.04.072
    [36] F. Mirzaee, S. F. Hoseini, Hybrid functions of Bernstein polynomials and block-pulse functions for solving optimal control of the nonlinear Volterra integral equations, Indag. Math. New Ser., 27 (2016), 835–849. https://doi.org/10.1016/j.indag.2016.03.002 doi: 10.1016/j.indag.2016.03.002
    [37] F. Mirzaee, S. Alipour, Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order, J. Comput. Appl. Math., 366 (2020), 112440. https://doi.org/10.1016/j.cam.2019.112440
    [38] F. Mohammadi, L. Moradi, D. Baleanu, A. Jajarmi, A hybrid functions numerical scheme for fractional optimal control problems: Application to nonanalytic dynamic systems, J. Vib. Control, 24 (2018), 5030–5043.
    [39] S. Momani, Z. Odibat, V. S. Erturk, Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation, Phys. lett. A, 370 (2007), 379–387. https://doi.org/10.1016/j.physleta.2007.05.083 doi: 10.1016/j.physleta.2007.05.083
    [40] D. Mozyrska, D. F. Torres, Minimal modified energy control for fractional linear control systems with the Caputo derivative, Carpathian J. Math., 26 (2010), 210–221.
    [41] P. Mu, L. Wang, C. Y. Liu, A control parameterization method to solve the fractional-order optimal control problem, J. Optim. Theory Appl., 187 (2020), 234–247. https://doi.org/10.1007/s10957-017-1163-7
    [42] Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102
    [43] I. Podlubny, Fractional differential equations, California: Academic Press, 1999.
    [44] S. Pooseh, R. Almeida, D. F. Torres, Discrete direct methods in the fractional calculus of variations, Comput. Math. Appl., 66 (2013), 668–676. https://doi.org/10.1016/j.camwa.2013.01.045
    [45] J. Sabouri, S. Effati, M. Pakdaman, A neural network approach for solving a class of fractional optimal control problems, Neural Process. Lett., 45 (2017), 59–74.
    [46] N. Samadyar, Y. Ordokhani, F. Mirzaeeb, Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion, Commun. Nonlinear Sci., 90 (2020), 105346. https://doi.org/10.1016/j.cnsns.2020.105346 doi: 10.1016/j.cnsns.2020.105346
    [47] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach Science Publishers, 1993.
    [48] Y. Talaei, Chelyshkov collocation approach for solving linear weakly singular Volterra integral equations, J. Appl. Math. Comput., 60 (2019), 201–222. https://doi.org/10.1007/s12190-018-1209-5
    [49] C. Tricaud, Y. Q. Chen, An approximate method for numerically solving fractional order optimal control problems of general form, Comput. Math. Appl., 59 (2010), 1644–1655. https://doi.org/10.1016/j.camwa.2009.08.006
    [50] S. P. Yang, A. G. Xiao, H. Su, Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. Math. Appl., 60 (2010), 2871–2879. https://doi.org/10.1016/j.camwa.2010.09.044
    [51] M. X. Yi, Y. M. Chen, Haar wavelet operational matrix method for solving fractional partial differential equations, CMES, 88 (2012), 229–243.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1174) PDF downloads(68) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog