Research article

Minimal homothetical and translation lightlike graphs in $ \mathbb{R} _{q}^{n+2} $

  • Received: 30 May 2022 Revised: 13 July 2022 Accepted: 20 July 2022 Published: 22 July 2022
  • MSC : 53B25, 53B30

  • In this paper, homothetical and translation lightlike graphs, which are generalizations of homothetical and translation lightlike hypersurfaces are investigated in the semi-Euclidean space $ \mathbb{R}_{q}^{n+2} $, respectively. We prove that all homothetical and all translation lightlike graphs are locally the hyperplanes. According to this fact, both of these graphs are minimal.

    Citation: Derya Sağlam. Minimal homothetical and translation lightlike graphs in $ \mathbb{R} _{q}^{n+2} $[J]. AIMS Mathematics, 2022, 7(9): 17198-17209. doi: 10.3934/math.2022946

    Related Papers:

  • In this paper, homothetical and translation lightlike graphs, which are generalizations of homothetical and translation lightlike hypersurfaces are investigated in the semi-Euclidean space $ \mathbb{R}_{q}^{n+2} $, respectively. We prove that all homothetical and all translation lightlike graphs are locally the hyperplanes. According to this fact, both of these graphs are minimal.



    加载中


    [1] K. Duggal, A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Dordrecht: Springer Science, 1996. http://dx.doi.org/10.1007/978-94-017-2089-2
    [2] K. Duggal, A. Gimenez, Lightlike hypersurfaces of Lorentzian manifolds and with distinguished screen, J. Geom. Phys., 55 (2005), 107–122. http://dx.doi.org/10.1016/j.geomphys.2004.12.004 doi: 10.1016/j.geomphys.2004.12.004
    [3] A. Bejancu, Null hypersurfaces of semi-Euclidean spaces, Saitama Mathematical Journal, 14 (1996), 25–40.
    [4] B. Acet, Lightlike hypersurfaces of metallic semi-Riemannian manifolds, Int. J. Geom. Methods M., 15 (2018), 1850201. http://dx.doi.org/10.1142/S0219887818502018 doi: 10.1142/S0219887818502018
    [5] E. Kılıç, M. Gülbahar, E. Kavuk, Concurrent vector fields on lightlike hypersurfaces, Mathematics, 9 (2021), 59. http://dx.doi.org/10.3390/math9010059 doi: 10.3390/math9010059
    [6] X. Liu, Z. Wang, On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, J. Nonlinear Sci. Appl., 8 (2015), 628–639. http://dx.doi.org/10.22436/jnsa.008.05.15 doi: 10.22436/jnsa.008.05.15
    [7] S. Izumiya, M. Fuster, K. Saji, Flat lightlike hypersurfaces in Lorentz-Minkowski 4-space, J. Geom. Phys., 59 (2009), 1528–1546. http://dx.doi.org/10.1016/j.geomphys.2009.07.017
    [8] F. Massamba, Relative nullity foliations and lightlike hypersurfaces in indefinite Kenmotsu manifolds, Turk J. Math., 35 (2011), 129–149. http://dx.doi.org/10.3906/mat-0908-17 doi: 10.3906/mat-0908-17
    [9] D. Pham, Degenerate Monge type hypersurfaces, Acta Math. Univ. Comen., 83 (2014), 67–80.
    [10] D. Kupeli, On null submanifolds in spacetimes, Geom. Dedicata, 23 (1987), 33–51. http://dx.doi.org/10.1007/BF00147389 doi: 10.1007/BF00147389
    [11] D. Sağlam, A. Sabuncuoğlu, Minimal homothetical lightlike hypersurfaces of semi-Euclidean spaces, Kuwait J. Sci. Eng., 38 (2011), 1–14.
    [12] W. Geomans, I. Woestyne, Translation and homothetical lightlike hypersurfaces of a semi-Euclidean space, Kuwait J. Sci. Eng., 38 (2009), 35–42.
    [13] B. Lima, N. Santos, P. Sousa, Translation hypersurfaces with constant scalar curvature into the Euclidean spaces, Isr. J. Math., 201 (2014), 797–811. http://dx.doi.org/10.1007/s11856-014-1083-2 doi: 10.1007/s11856-014-1083-2
    [14] M. Moruz, M. Munteanu, Minimal translation hypersurfaces in $E^{4}$, J. Math. Anal. Appl., 439 (2016), 798–812. http://dx.doi.org/10.1016/j.jmaa.2016.02.077 doi: 10.1016/j.jmaa.2016.02.077
    [15] D. Yang, J. Zhang, Y. Fu, A note on minimal translation graphs in Euclidean space, Mathematics, 7 (2019), 889. http://dx.doi.org/10.3390/math7100889 doi: 10.3390/math7100889
    [16] D. Sağlam, Minimal translation graphs in semi-Euclidean space, AIMS Mathematics, 6 (2021), 10207–10221. http://dx.doi.org/10.3934/math.2021591 doi: 10.3934/math.2021591
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1181) PDF downloads(49) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog