Research article

New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects

  • Received: 07 February 2022 Revised: 24 June 2022 Accepted: 03 July 2022 Published: 19 July 2022
  • MSC : 34K39, 93D05

  • In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results.

    Citation: Yinjie Qian, Lian Duan, Hui Wei. New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects[J]. AIMS Mathematics, 2022, 7(9): 16962-16974. doi: 10.3934/math.2022931

    Related Papers:

  • In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results.



    加载中


    [1] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [2] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932
    [3] S. Wen, T. Huang, Z. Zeng, Y. Chen, P. Li, Circuit design and exponential stabilization of memristive neural networks, Neural Networks, 63 (2015), 48–56. https://doi.org/10.1016/j.neunet.2014.10.011 doi: 10.1016/j.neunet.2014.10.011
    [4] Y. Zhao, S. Ren, J. Kurths, Finite-time and fixed-time synchronization for a class of memristor-based competitive neural networks with different time scales, Chaos Solitons Fract., 148 (2021), 111033. https://doi.org/10.1016/j.chaos.2021.111033 doi: 10.1016/j.chaos.2021.111033
    [5] H. Bao, J. Cao, J. Kurths, State estimation of fractional-order delayed memristive neural networks, Nonlinear Dyn., 94 (2018), 1215–1225. https://doi.org/10.1007/s11071-018-4419-3 doi: 10.1007/s11071-018-4419-3
    [6] L. Duan, L. Huang, Periodicity and dissipativity for memristor-based mixed time-varying delayed neural networks via differential inclusions, Neural Networks, 57 (2014), 12–22. https://doi.org/10.1016/j.neunet.2014.05.002 doi: 10.1016/j.neunet.2014.05.002
    [7] Z. Guo, S. Yang, J. Wang, Global exponential synchronization of multiple memristive neural networks with time delay via nonlinear coupling, IEEE Trans. Neural Networks Learn. Syst., 26 (2014), 1300–1311. https://doi.org/10.1109/TNNLS.2014.2354432 doi: 10.1109/TNNLS.2014.2354432
    [8] Y. Huang, F. Wu, Finite-time passivity and synchronization of coupled complex-valued memristive neural networks, Inf. Sci., 580 (2021), 775–880. https://doi.org/10.1016/j.ins.2021.09.050 doi: 10.1016/j.ins.2021.09.050
    [9] Y. Huang, S. Qiu, S. Ren, Finite-time synchronisation and passivity of coupled memristive neural networks, Int. J. Control, 93 (2020), 2824–2837. https://doi.org/10.1080/00207179.2019.1566640 doi: 10.1080/00207179.2019.1566640
    [10] L. Wang, D. Xu, Global exponential stability of Hopfield reaction-diffusion neural networks with time-varying delays, Sci. China Ser. F, 46 (2003), 466–474. https://doi.org/10.1016/j.neunet.2019.12.016 doi: 10.1016/j.neunet.2019.12.016
    [11] J. Wang, X. Zhang, H. Wu, T. Huang, Q. Wang, Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights, IEEE Trans. Cybern., 49 (2018), 3385–3397. https://doi.org/10.1109/TCYB.2018.2842437 doi: 10.1109/TCYB.2018.2842437
    [12] L. Duan, L. Huang, Z. Guo, X. Fang, Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays, Comput. Math. Appl., 73 (2017), 233–245. https://doi.org/10.1016/j.camwa.2016.11.010 doi: 10.1016/j.camwa.2016.11.010
    [13] J. Wang, H. Wu, L. Guo, Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions, IEEE Trans. Neural Networks, 22 (2011), 2105–2116. https://doi.org/10.1109/TNN.2011.2170096 doi: 10.1109/TNN.2011.2170096
    [14] J. Wang, H. Wu, T. Huang, S. Ren, Passivity and synchronization of linearly coupled reaction-diffusion neural networks with adaptive coupling, IEEE Trans. Cybern., 45 (2014), 1942–1952. https://doi.org/10.1109/TCYB.2014.2362655 doi: 10.1109/TCYB.2014.2362655
    [15] L. Shanmugam, P. Mani, R. Rajan, Y. H. Joo, Adaptive synchronization of reaction-diffusion neural networks and its application to secure communication, IEEE Trans. Cybern., 50 (2018), 911–922. https://doi.org/10.1109/TCYB.2018.2877410 doi: 10.1109/TCYB.2018.2877410
    [16] S. Wang, Z. Guo, S. Wen, T. Huang, Gloabl synchronization of coupled delayed memristive reaction-diffusion neural networks, Neural Networks, 123 (2020), 362–371. https://doi.org/10.1016/j.neunet.2019.12.016 doi: 10.1016/j.neunet.2019.12.016
    [17] J. Cheng, Pinning-controlled synchronization of partially coupled dynamical networks via impulsive control, AIMS Math., 7 (2022), 143–155. https://doi.org/10.3934/math.2022008 doi: 10.3934/math.2022008
    [18] Y. Huang, J. Hou, E. Yang, General decay lag anti-synchronization of multi-weighted delayed coupled neural networks with reaction-diffusion terms, Inf. Sci., 511 (2020), 36–57. https://doi.org/10.1016/j.ins.2019.09.045 doi: 10.1016/j.ins.2019.09.045
    [19] S. Bhat, D. Bernstein, Finite time stability of homogeneous systems, Proc. Amer. Control Conf., 1997, 2513–2514. https://doi.org/10.1109/ACC.1997.609245
    [20] L. Duan, M. Shi, C. Huang, M. Fang, New results on finite-time synchronization of delayed fuzzy neural networks with inertial effects, Int. J. Fuzzy Syst., 24 (2022), 676–685. https://doi.org/10.1007/s40815-021-01171-1 doi: 10.1007/s40815-021-01171-1
    [21] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2012), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [22] C. Aouiti, E. Assali, Y. Foutayeni, Finite-time and fixed-time synchronization of inertial Cohen-Grossberg-type neural networks with time varying delays, Neural Process. Lett., 50 (2019), 2407–2436. https://doi.org/10.1007/s11063-019-10018-8 doi: 10.1007/s11063-019-10018-8
    [23] J. Xiao, Z. Zeng, S. Wen, A. Wu, L. Wang, A unified framework design for finite-time and fixed-time synchronization of discontinuous neural networks, IEEE Trans. Cybern., 51 (2019), 3004–3016. https://doi.org/10.1109/TCYB.2019.2957398 doi: 10.1109/TCYB.2019.2957398
    [24] X. Liu, D. W. C. Ho, Q. Song, W. Xu, Finite/fixed-time pinning synchronization of complex networks with stochastic disturbances, IEEE Trans. Cybern., 49 (2018), 2398–2403. https://doi.org/10.1109/TCYB.2018.2821119 doi: 10.1109/TCYB.2018.2821119
    [25] Q. Wang, L. Duan, H. Wei, L. Wang, Finite-time anti-synchronisation of delayed Hopfield neural networks with discontinuous activations, Int. J. Control, 2021. https://doi.org/10.1080/00207179.2021.1912396
    [26] L. Duan, M. Shi, L. Huang, New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations, Fuzzy Sets Syst., 416 (2021), 141–151. https://doi.org/10.1016/j.fss.2020.04.016 doi: 10.1016/j.fss.2020.04.016
    [27] X. Liu, D. Ho, Q. Song, J. Cao, Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances, Nonlinear Dyn. 90 (2017), 2057–2068. https://doi.org/10.1007/s11071-017-3782-9
    [28] S. Wang, Z. Guo, S. Wen. T. Huang, S. Gong, Finite/fixed-time synchronization of delyed memrisitive reaction-diffusion neural networks, Neurocomputing, 375 (2020), 1–8. https://doi.org/10.1016/j.neucom.2019.06.092 doi: 10.1016/j.neucom.2019.06.092
    [29] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
    [30] J. Zhou, S. Xu, H. Shen, B. Zhang, Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions, Int. J. Syst. Sci., 44 (2013), 1494–1503. https://doi.org/10.1080/00207721.2012.659693 doi: 10.1080/00207721.2012.659693
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1171) PDF downloads(85) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog