In this paper, we consider the Darcy model with magnetic field affect which is used to describe the double diffusive flow of a fluid containing a solute. Using the energy estimate methods, we derive the prior bounds of the solutions. By using these a prior bounds, the continuous dependence of the solutions to Darcy model on the magnetic coefficient and the boundary parameter is established.
Citation: Zhanwei Guo, Jincheng Shi. Structural stability for the Darcy model in double diffusive convection flow with Magnetic field effect[J]. AIMS Mathematics, 2022, 7(9): 16366-16386. doi: 10.3934/math.2022894
In this paper, we consider the Darcy model with magnetic field affect which is used to describe the double diffusive flow of a fluid containing a solute. Using the energy estimate methods, we derive the prior bounds of the solutions. By using these a prior bounds, the continuous dependence of the solutions to Darcy model on the magnetic coefficient and the boundary parameter is established.
[1] | E. Aulisa, L. Bloshanskaya, L. Hoang, A. Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys., 50 (2009), 103102. https://doi.org/10.1063/1.3204977 doi: 10.1063/1.3204977 |
[2] | A. O. Celebi, V. K. Kalantarov, D. Uǧurlu, On continuous dependence on coefficients of the Brinkman-Forchheimer equations, Appl. Math. Lett., 19 (2006), 801–807. https://doi.org/10.1016/j.aml.2005.11.002 doi: 10.1016/j.aml.2005.11.002 |
[3] | A. O. Celebi, V. K. Kalantarov, D. Uǧurlu, Continuous dependence for the convective Brinkman-Forchheimer equations, Appl. Anal., 84 (2005), 877–888. https://doi.org/10.1080/00036810500148911 doi: 10.1080/00036810500148911 |
[4] | Y. Liu, X. L. Qin, J. C. Shi, W. J. Zhi, Structural stability of the Boussinesq fluid interfacing with a Darcy fluid in a bounded region in $R^2$, Appl. Math. Comput., 411 (2021), 126488. https://doi.org/10.1016/j.amc.2021.126488 doi: 10.1016/j.amc.2021.126488 |
[5] | Y. Liu, X. L. Qin, S. H. Zhang, Global existence and estimates for Blackstock's model of thermoviscous flow with second sound phenomena, J. Differ. Equ., 324 (2022), 76–101. https://doi.org/10.1016/j.jde.2022.04.001 doi: 10.1016/j.jde.2022.04.001 |
[6] | Y. Liu, J. C. Shi, Coupled plate equations with indirect damping: smoothing effect, decay properties and approximation, Z. Angew. Math. Phys., 73 (2022), 1–15. https://doi.org/10.1007/s00033-021-01640-5 doi: 10.1007/s00033-021-01640-5 |
[7] | W. H. Chen, Dissipative structure and diffusion phenomena for doubly dissipative elastic waves in two space dimensions, J. Math. Anal. Appl., 486 (2020), 123922. https://doi.org/10.1016/j.jmaa.2020.123922 doi: 10.1016/j.jmaa.2020.123922 |
[8] | W. H. Chen, Q. F. Liu, S. Q. Tian, X. J. Zhao, Exposed facet dependent stability of ZnO micro/nano crystals as a photocatalyst, Appl. Surface Sci., 470 (2019), 807–816. https://doi.org/10.1016/j.apsusc.2018.11.206 doi: 10.1016/j.apsusc.2018.11.206 |
[9] | K. A. Ames, L. E. Payne, Continuous dependence results for a problem in penetrative convection, Quart. Appl. Math., 55 (1997), 769–790. https://doi.org/10.1090/qam/1486548 doi: 10.1090/qam/1486548 |
[10] | K. A. Ames, L. E. Payne, Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation, Math. Models Methods Appl. Sci., 8 (1998), 187–202. https://doi.org/10.1142/S0218202598000093 doi: 10.1142/S0218202598000093 |
[11] | K. A. Ames, B. Straughan, Non-standard and improperly posed problems, Academic Press, 1997. |
[12] | M. Ciarletta, B. Straughan, V. Tibullo, Modelling boundary and nonlinear effects in porous media flow, Nonlinear Anal. Real World Appl., 12 (2011), 2839–2843. https://doi.org/10.1016/j.nonrwa.2011.02.023 doi: 10.1016/j.nonrwa.2011.02.023 |
[13] | F. Franchi, B. Straughan, Continuous dependence on the body force for solutions to the Navier-Stokes equations and on the heat supply in a model for double diffusive porous convection, J. Math. Anal. Appl., 172 (1993), 117–129. https://doi.org/10.1006/jmaa.1993.1011 doi: 10.1006/jmaa.1993.1011 |
[14] | F. Franchi, B. Straughan, Continuous dependence on the relaxation time and modelling, and unbounded growth, in theories of heat conduction with finite propagation speeds, J. Math. Anal. Appl., 185 (1994), 726–746. https://doi.org/10.1006/jmaa.1994.1279 doi: 10.1006/jmaa.1994.1279 |
[15] | F. Franchi, B, Straughan, Continuous dependence and decay for the Forchheimer equations, Proc. R. Soc. Lond. A, 459 (2003), 3195–3202. https://doi.org/10.1098/rspa.2003.1169 doi: 10.1098/rspa.2003.1169 |
[16] | F. Franchi, B. Straughan, Spatial decay estimates and continuous dependence on modelling for an equation from dynamo theory, Proc. R. Soc. Lond. A., 445 (1994), 437–451. https://doi.org/10.1098/rspa.1994.0070 doi: 10.1098/rspa.1994.0070 |
[17] | C. H. Lin, L. E. Payne, Structural stability for the Brinkman equations of flow in double diffusive convection, J. Math. Anal. Appl., 325 (2007), 1479–1490. https://doi.org/10.1016/j.jmaa.2006.02.031 doi: 10.1016/j.jmaa.2006.02.031 |
[18] | C. H. Lin, L. E. Payne, Continuous dependence on the Soret coefficient for double diffusive convection in Darcy flow, J. Math. Anal. Appl., 342 (2008), 311–325. https://doi.org/10.1016/j.jmaa.2007.11.036 doi: 10.1016/j.jmaa.2007.11.036 |
[19] | Y. F. Li, X. J. Chen, J. C. Shi, Structural stability in resonant penetrative convection in a Brinkman-Forchheimer fluid interfacing with a Darcy fluid, Appl. Math. Optim., 84 (2021), 979–999. https://doi.org/10.1007/s00245-021-09791-7 doi: 10.1007/s00245-021-09791-7 |
[20] | Y. F. Li, S. Z. Xiao, P. Zeng, The applications of some basic mathematical inequalities on the convergence of the primitive equations of moist atmosphere, J. Math. Inequal., 15 (2021), 293–304. https://doi.org/10.7153/jmi-2021-15-22 doi: 10.7153/jmi-2021-15-22 |
[21] | Y. F. Li, S. Z. Xiao, Continuous dependence of 2D large scale primitive equtions on the boundary conditions in oceanic dynamics, Appl. Math., 67 (2022), 103–124. https://doi.org/10.21136/AM.2021.0076-20 doi: 10.21136/AM.2021.0076-20 |
[22] | L. E. Payne, B. Straughan, Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl., 77 (1998), 317–354. https://doi.org/10.1016/S0021-7824(98)80102-5 doi: 10.1016/S0021-7824(98)80102-5 |
[23] | L. E. Payne, B. Straughan, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Stud. Appl. Math., 102 (1999), 419–439. https://doi.org/10.1111/1467-9590.00116 doi: 10.1111/1467-9590.00116 |
[24] | Y. Zhou, Y. J. Wang, W. K. Bu, Exact solution for a Stefan problem with latent heat a power function of position, Int. J. Heat Mass Transfer, 69 (2014), 451–454. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.043 doi: 10.1016/j.ijheatmasstransfer.2013.10.043 |
[25] | Y. Zhou, X. X. Hu, T. Li, D. H. Zhang, G. Q. Zhou, Similarity type of general solution for one-dimensional heat conduction in the cylindrical coordinate, Int. J. Heat Mass Transfer, 119 (2018), 542–550. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.131 doi: 10.1016/j.ijheatmasstransfer.2017.11.131 |
[26] | M. W. Hirsch, S. Smale, Differential equations, dynamical systems, and linear algebra, NewYork: Academic Press, 1974. |
[27] | A. J. Harfash, Continuous dependence on the coefficients for double diffusive convection in Darcy flow with Magnetic field effect, Anal. Math. Phys., 3 (2013), 163–181. https://doi.org/10.1007/s13324-013-0053-x doi: 10.1007/s13324-013-0053-x |
[28] | L. E. Payne, Personal communication, Cornell University, 1987. |
[29] | F. Franchi, B. Straughan, Structural stability for the Brinkman equations of porous media, Math. Methods Appl. Sci., 19 (1996), 1335–1347. |
[30] | L. E. Payne, B. Straughan, Structural stability for the Darcy equations of flow in porous media, Proc. R. Soc. Lond. A., 454 (1998), 1691–1698. https://doi.org/10.1098/rspa.1998.0227 doi: 10.1098/rspa.1998.0227 |
[31] | G. P. Galdi, B. Straughan, Exchange of stabilities, symmetry and nonlinear stability, Arch. Rational Mech. Anal., 89 (1985), 211–228. https://doi.org/10.1007/BF00276872 doi: 10.1007/BF00276872 |