Research article

Generalized iterated function system for common attractors in partial metric spaces

  • Received: 27 November 2021 Revised: 04 April 2022 Accepted: 06 April 2022 Published: 10 May 2022
  • MSC : 47H04, 47H07, 47H10

  • In this paper, we aim to obtain some new common attractors with the assistance of finite families of generalized contractive mappings, that belong to the special class of mappings defined on a partial metric space. Consequently, a variety of results for iterated function systems satisfying a different set of generalized contractive conditions are acquired. We present some examples to reinforce the results proved herein. These results generalize, unify and extend a variety of results that exist in current literature.

    Citation: Melusi Khumalo, Talat Nazir, Vuledzani Makhoshi. Generalized iterated function system for common attractors in partial metric spaces[J]. AIMS Mathematics, 2022, 7(7): 13074-13103. doi: 10.3934/math.2022723

    Related Papers:

  • In this paper, we aim to obtain some new common attractors with the assistance of finite families of generalized contractive mappings, that belong to the special class of mappings defined on a partial metric space. Consequently, a variety of results for iterated function systems satisfying a different set of generalized contractive conditions are acquired. We present some examples to reinforce the results proved herein. These results generalize, unify and extend a variety of results that exist in current literature.



    加载中


    [1] E. Ameer, H. Aydi, M. Arshad, H. Alsamir, M. S. Noorani, Hybrid multivalued type contraction mappings in $\alpha _{K}$-complete partial $b$-metric spaces and applications, Symmetry, 11 (2019), 86. https://doi.org/10.3390/sym11010086 doi: 10.3390/sym11010086
    [2] H. Aydi, A. Felhi, E. Karapinar, S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miskolc Math. Notes, 19 (2018), 111–124. https://doi.org/10.18514/MMN.2018.1652 doi: 10.18514/MMN.2018.1652
    [3] H. Aydi, M. Abbas, C. Vetro, Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces, Topol. Appl., 159 (2012), 3234–3242. https://doi.org/10.1016/j.topol.2012.06.012 doi: 10.1016/j.topol.2012.06.012
    [4] I. Altun, H. Simsek, Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., 1 (2008), 1–8.
    [5] M. Abbas, B. Ali, Fixed point of Suzuki-Zamfirescu hybrid contractions in partial metric spaces via partial Hausdorff metric, Fixed Point Theory Appl., 2013 (2013), 21. https://doi.org/10.1186/1687-1812-2013-21 doi: 10.1186/1687-1812-2013-21
    [6] M. F. Barnsley, H. Rising, Fractals everywhere, Morgan Kaufmann, 1993.
    [7] M. Barnsley, A. Vince, Developments in fractal geometry, Bull. Math. Sci., 3 (2013), 299–348. https://doi.org/10.1007/s13373-013-0041-3 doi: 10.1007/s13373-013-0041-3
    [8] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [9] P. Debnath, N. Konwar, S. Radenovic, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Springer, 2021.
    [10] K. Goyal, B. Prasad, Generalized iterated function systems in multi-valued mapping, AIP Conf. Proc., 2316 (2021), 040001. https://doi.org/10.1063/5.0036921 doi: 10.1063/5.0036921
    [11] H. A. Hammad, M. De la Sen, A technique of tripled coincidence points for solving a system of nonlinear integral equations in POCML spaces, J. Inequal. Appl., 2020 (2020), 211. https://doi.org/10.1186/s13660-020-02477-8 doi: 10.1186/s13660-020-02477-8
    [12] H. A. Hammad, P. Agarwal, L. G. J. Guirao, Applications to boundary value problems and homotopy theory via tripled fixed point techniques in partially metric spaces, Mathematics, 9 (2021), 1–22. https://doi.org/10.3390/math9162012 doi: 10.3390/math9162012
    [13] J. Hutchinson, Fractals and self-similarity, Indiana U. Math. J., 30 (1981), 713–747.
    [14] K. Javed, H. Aydi, F. Uddin, M. Arshad, On orthogonal partial $b$-metric spaces with an application, J. Math., 2021 (2021), 6692063. https://doi.org/10.1155/2021/6692063 doi: 10.1155/2021/6692063
    [15] E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 256. https://doi.org/10.3390/math6110256 doi: 10.3390/math6110256
    [16] M. A. Kutbi, A. Latif, T. Nazir, Generalized rational contractions in semi metric spaces via iterated function system, RACSAM, 114 (2020), 187. https://doi.org/10.1007/s13398-020-00915-2 doi: 10.1007/s13398-020-00915-2
    [17] G. Lin, X. Cheng, Y. Zhang, A parametric level set based collage method for an inverse problem in elliptic partial differential equations, J. Comput. Appl. Math., 340 (2018), 101–121. https://doi.org/10.1016/j.cam.2018.02.008 doi: 10.1016/j.cam.2018.02.008
    [18] S. G. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [19] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475–488. https://doi.org/10.2140/pjm.1969.30.475 doi: 10.2140/pjm.1969.30.475
    [20] T. Nazir, S. Silverstrov, M. Abbas, Fractals of generalized $F$-Hutchinson operator, Waves Wavelets Fractals Adv. Anal., 2 (2016), 29–40. https://doi.org/10.1515/wwfaa-2016-0004 doi: 10.1515/wwfaa-2016-0004
    [21] N. A. Secelean, Generalized countable iterated function systems, Filomat, 25 (2011), 21–36. https://doi.org/10.2298/FIL1101021S doi: 10.2298/FIL1101021S
    [22] Y. Zhang, B. Hofmann, Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems, Inverse Probl. Imag., 15 (2021), 229–256. https://doi.org/10.3934/ipi.2020062 doi: 10.3934/ipi.2020062
    [23] V. Todorcevic, Harmonic quasiconformal mappings and hyperbolic type metrics, Springer, 2019.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1525) PDF downloads(68) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog