Research article

Study on a semilinear fractional stochastic system with multiple delays in control

  • Received: 19 February 2022 Revised: 04 April 2022 Accepted: 12 April 2022 Published: 25 April 2022
  • MSC : 34K35, 34K50, 93B05, 93E20

  • This paper studies a semilinear fractional stochastic differential equation with multiple constant point delays in control. We transform the controllability problem into a fixed point problem. We obtain sufficient condition for the controllability by using Schauder's fixed point theorem. In addition, we discuss the optimal controllability of the problem. Some examples are given to illustrate the main result.

    Citation: Abdur Raheem, Maryam G. Alshehri, Asma Afreen, Areefa Khatoon, Musaad S. Aldhabani. Study on a semilinear fractional stochastic system with multiple delays in control[J]. AIMS Mathematics, 2022, 7(7): 12374-12389. doi: 10.3934/math.2022687

    Related Papers:

  • This paper studies a semilinear fractional stochastic differential equation with multiple constant point delays in control. We transform the controllability problem into a fixed point problem. We obtain sufficient condition for the controllability by using Schauder's fixed point theorem. In addition, we discuss the optimal controllability of the problem. Some examples are given to illustrate the main result.



    加载中


    [1] A. Afreen, A. Raheem, A. Khatoon, Controllability of a second-order non-autonomous stochastic semilinear system with several delays in control, Chaos Soliton. Fract., 155 (2022), 111763. http://dx.doi.org/10.1016/j.chaos.2021.111763 doi: 10.1016/j.chaos.2021.111763
    [2] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [3] A. Haq, N. Sukavanam, Controllability of second-order nonlocal retarded semilinear systems with delay in control, Appl. Anal., 99 (20), 2741-2754. http://dx.doi.org/10.1080/00036811.2019.1582031
    [4] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983. http://dx.doi.org/10.1007/978-1-4612-5561-1
    [5] A. Raheem, M. Kumar, On controllability for a nondensely defined fractional differential equation with a deviated argument, Math. Sci., 13 (2019), 407-413. http://dx.doi.org/10.1007/s40096-019-00309-5 doi: 10.1007/s40096-019-00309-5
    [6] A. Shukla, U. Arora, N. Sukavanam, Approximate controllability of semilinear stochastic system with multiple delays in control, Cogent Mathematics, 3 (2016), 1234183. http://dx.doi.org/10.1080/23311835.2016.1234183 doi: 10.1080/23311835.2016.1234183
    [7] A. Shukla, N. Sukavanam, D. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha \in (1, 2]$, Proceedings of the Conference on Control and its Applications, 2015,175-180. http://dx.doi.org/10.1137/1.9781611974072.25 doi: 10.1137/1.9781611974072.25
    [8] A. Shukla, N. Sukavanam, D. Pandey, Approximate controllability of semilinear fractional control systems of order $\alpha \in (1, 2]$ with infinite delay, Mediterr. J. Math., 13 (2016), 2539-2550. http://dx.doi.org/10.1007/s00009-015-0638-8 doi: 10.1007/s00009-015-0638-8
    [9] A. Shukla, N. Sukavanam, D. Pandey, Approximate controllability of fractional semilinear stochastic system of order $\alpha \in (1, 2], $ J. Dyn. Control Syst., 23 (2017), 679-691. http://dx.doi.org/10.1007/s10883-016-9350-7 doi: 10.1007/s10883-016-9350-7
    [10] A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861-875. http://dx.doi.org/10.1007/s12190-020-01418-4 doi: 10.1007/s12190-020-01418-4
    [11] E. Balder, Necessary and sufficient conditions for L1-strong-weak lower semicontinuity of integral functional, Nonlinear Anal.-Theor., 11 (1987), 1399-1404. http://dx.doi.org/10.1016/0362-546X(87)90092-7 doi: 10.1016/0362-546X(87)90092-7
    [12] E. Bajlekova, Fractional evolution equations in Banach spaces, Ph. D Thesis, Eindhoven University of Technology, 2001.
    [13] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [14] J. Klamka, Stochastic controllability of systems with multiple delays in control, Int. J. Appl. Math. Comput. Sci., 19 (2009), 39-48. http://dx.doi.org/10.2478/v10006-009-0003-9 doi: 10.2478/v10006-009-0003-9
    [15] J. Klamka, Controllability of semilinear systems with multiple variable delays in control, Mathematics, 8 (2020), 1955. http://dx.doi.org/10.3390/math8111955 doi: 10.3390/math8111955
    [16] J. Dauer, Nonlinear perturbations of quasi-linear control systems, J. Math. Anal. Appl., 54 (1976), 717-725. http://dx.doi.org/10.1016/0022-247X(76)90191-8 doi: 10.1016/0022-247X(76)90191-8
    [17] K. Balachandran, J. Kokila, J. Trujillo, Relative controllability of fractional dynamical systems with multiple delays in control, Comput. Math. Appl., 64 (2012), 3037-3045. http://dx.doi.org/10.1016/j.camwa.2012.01.071 doi: 10.1016/j.camwa.2012.01.071
    [18] K. Li, J. Peng, J. Gao, Controllability of nonlocal fractional differential systems of order $\alpha \in (1, 2]$ in Banach spaces, Rep. Math. Phys., 71 (2013), 33-43. http://dx.doi.org/10.1016/S0034-4877(13)60020-8 doi: 10.1016/S0034-4877(13)60020-8
    [19] K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley-Interscience, 1993.
    [20] L. Evans, An introduction to stochastic differential equations, Providence: American Mathematical Society, 2013.
    [21] L. Mahto, S. Abbas, Approximate controllability and optimal control of impulsive fractional functional differential equations, J. Abstr. Differ. Equ. Appl., 4 (2013), 44-59.
    [22] N. Mahmudov, A. Denker, On controllability of linear stochastic systems, Int. J. Control, 73 (2000), 144-151. http://dx.doi.org/10.1080/002071700219849 doi: 10.1080/002071700219849
    [23] P. Balasubramaniam, S. Ntouyas, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl., 324 (2006), 161-176. http://dx.doi.org/10.1016/j.jmaa.2005.12.005 doi: 10.1016/j.jmaa.2005.12.005
    [24] R. Dhayal, M. Malik, Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos Soliton. Fract., 151 (2021), 111292. http://dx.doi.org/10.1016/j.chaos.2021.111292 doi: 10.1016/j.chaos.2021.111292
    [25] R. Dhayal, M. Malik, S. Abbas, A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Method. Appl. Sci., 43 (2020), 4107-4124. http://dx.doi.org/10.1002/mma.6177 doi: 10.1002/mma.6177
    [26] R. Curtain, H. Zwart, An introduction to infinite dimensional linear systems theory, New York: Springer-Verlag, 1995. http://dx.doi.org/10.1007/978-1-4612-4224-6
    [27] R. Haloi, Approximate controllability of non-autonomous nonlocal delay differential equations with deviating arguments, Electron. J. Differ. Eq., 2017 (2017), 1-12.
    [28] S. Barnett, R. Cameron, Introduction to mathematical control theory, Oxford: Clarendon Press, 1975.
    [29] T. Sathiyaraj, J. Wang, P. Balasubramaniam, Controllability and optimal control for a class of time-delayed fractional stochastic integro-differential systems, Appl. Math. Optim., 84 (2020), 2527-2554. http://dx.doi.org/10.1007/s00245-020-09716-w doi: 10.1007/s00245-020-09716-w
    [30] U. Arora, N. Sukavanam, Controllability of fractional system of order $\rho \in (1, 2]$ with nonlinear term having integral contractor, IMA J. Math. Control I., 36 (2019), 271-283. http://dx.doi.org/10.1093/imamci/dnx044 doi: 10.1093/imamci/dnx044
    [31] V. Singh, R. Chaudhary, D. Pandey, Approximate controllability of second-order non-autonomous stochastic impulsive differential systems, Stoch. Anal. Appl., 39 (2021), 339-356. http://dx.doi.org/10.1080/07362994.2020.1798251 doi: 10.1080/07362994.2020.1798251
    [32] Y. Yamamoto, Controllability of nonlinear systems, J. Optim. Theory Appl., 22 (1977), 41-49.
    [33] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, Hackensack: World Scientific, 2016.
    [34] Y. Zhou, J. He, New results on controllability of fractional evolution systems with order $\alpha \in (1, 2), $ Evol. Equ. Control The., 10 (2021), 491-509. http://dx.doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1660) PDF downloads(100) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog