Research article

Maximum likelihood DOA estimation based on improved invasive weed optimization algorithm and application of MEMS vector hydrophone array

  • Received: 26 January 2022 Revised: 10 April 2022 Accepted: 17 April 2022 Published: 25 April 2022
  • MSC : 65K05, 65K10

  • Direction of arrival (DOA) estimation based on Maximum Likelihood is a common method in array signal processing, with many practical applications, but the huge amount of calculation limits the practical application. To deal with such an Maximum Likelihood (ML) DOA estimation problem, firstly, the DOA estimation model with ML for acoustic vector sensor array is developed, where the optimization standard in various cases can be unified by converting the maximum of objective function to the minimum. Secondly, based on the Invasive Weed Optimization (IWO) method which is a novel biological evolutionary algorithm, a new Improved IWO (IIWO) algorithm for DOA estimation of the acoustic vector sensor array is proposed by using ML estimation. This algorithm simulates weed invasion process for DOA estimation by adjusting the non-linear harmonic exponent of IWO algorithm adaptively. The DOA estimation accuracy has been improved, and the computation of multidimensional nonlinear optimization for the ML method has been greatly reduced in the IIWO algorithm. Finally, compared with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE) method and Tuna Swarm Optimization(TSO) algorithm, numerical simulations show that the proposed algorithm has faster convergence rate, improved accuracy in terms of Root Mean Square Error (RMSE), lower computational complexity and more robust estimation performance for ML DOA estimation. The experiment with tracking the orientation of the motorboat by Microelectronic mechanical systems (MEMS) vector hydrophone array shows the superior performance of proposed IIWO algorithm in engineering application. Therefore, the proposed ML-DOA estimation with IIWO algorithm can take into account both resolution and computation. which can meet the requirements of real-time calculation and estimation accuracy in the actual environment.

    Citation: Peng Wang, Jiajun Huang, Weijia He, Jingqi Zhang, Fan Guo. Maximum likelihood DOA estimation based on improved invasive weed optimization algorithm and application of MEMS vector hydrophone array[J]. AIMS Mathematics, 2022, 7(7): 12342-12363. doi: 10.3934/math.2022685

    Related Papers:

  • Direction of arrival (DOA) estimation based on Maximum Likelihood is a common method in array signal processing, with many practical applications, but the huge amount of calculation limits the practical application. To deal with such an Maximum Likelihood (ML) DOA estimation problem, firstly, the DOA estimation model with ML for acoustic vector sensor array is developed, where the optimization standard in various cases can be unified by converting the maximum of objective function to the minimum. Secondly, based on the Invasive Weed Optimization (IWO) method which is a novel biological evolutionary algorithm, a new Improved IWO (IIWO) algorithm for DOA estimation of the acoustic vector sensor array is proposed by using ML estimation. This algorithm simulates weed invasion process for DOA estimation by adjusting the non-linear harmonic exponent of IWO algorithm adaptively. The DOA estimation accuracy has been improved, and the computation of multidimensional nonlinear optimization for the ML method has been greatly reduced in the IIWO algorithm. Finally, compared with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE) method and Tuna Swarm Optimization(TSO) algorithm, numerical simulations show that the proposed algorithm has faster convergence rate, improved accuracy in terms of Root Mean Square Error (RMSE), lower computational complexity and more robust estimation performance for ML DOA estimation. The experiment with tracking the orientation of the motorboat by Microelectronic mechanical systems (MEMS) vector hydrophone array shows the superior performance of proposed IIWO algorithm in engineering application. Therefore, the proposed ML-DOA estimation with IIWO algorithm can take into account both resolution and computation. which can meet the requirements of real-time calculation and estimation accuracy in the actual environment.



    加载中


    [1] M. Hawkes, A. Nehorai, Wideband source localization using a distributed acoustic vector-sensor array, IEEE T. Signal Proces., 51 (2003), 1479–1491. https://doi.org/10.1109/TSP.2003.811225 doi: 10.1109/TSP.2003.811225
    [2] Y. W. Zhang, D. J. Sun, D. L. Zhang, Robust adaptive acoustic vector sensor beamforming using automated diagonal loading, Appl. Acoust., 70 (2009), 1029–1033. https://doi.org/10.1016/j.apacoust.2009.03.004 doi: 10.1016/j.apacoust.2009.03.004
    [3] A. J. Song, A. Abdi, M. Badiey, P. Hursky, Experimental demonstration of underwater acoustic communication by vector sensors, IEEE J. Oceanic Eng., 36 (2011), 454–461. https://doi.org/10.1109/Joe.2011.2133050 doi: 10.1109/Joe.2011.2133050
    [4] D. R. Dall'Osto, J. W. Choi, P. H. Dahl, Measurement of acoustic particle motion in shallow water and its application to geoacoustic inversion, J. Acoust. Soc. Am., 139 (2016), 311. https://doi.org/10.1121/1.4939492 doi: 10.1121/1.4939492
    [5] P. Wang, G. J. Zhang, C. Y. Xue, W. D. Zhang, J. J. Xiong, Self-adapting root-music algorithm and its real-valued formulation for acoustic vector sensor array, EURASIP J. Adv. Sig. Process., 2012 (2012), 228. https://doi.org/10.1186/1687-6180-2012-228 doi: 10.1186/1687-6180-2012-228
    [6] H. P. Hu, L. M. Zhang, H. C. Yan, Y. P. Bai, P. Wang, Denoising and baseline drift removal method of MEMS hydrophone signal based on vmd and wavelet threshold processing, IEEE Access, 7 (2019), 59913–59922. https://doi.org/10.1109/Access.2019.2915612 doi: 10.1109/Access.2019.2915612
    [7] A. Nehorai, E. Paldi, Acoustic vector-sensor array processing, IEEE Trans. Signal Process., 42 (1994), 2481–2491. https://doi.org/10.1109/78.317869 doi: 10.1109/78.317869
    [8] B. C. Ng, C. M. S. See, Sensor-array calibration using a maximum-likelihood approach, IEEE T. Antenn. Propag., 44 (1996), 827–835. https://doi.org/10.1109/8.509886 doi: 10.1109/8.509886
    [9] P. Stoica, A. Nehorai, Music, maximum likelihood, and Cramer-Rao bound, IEEE T. Acoust. Speech Sig. Process., 37 (1989), 720–741. https://doi.org/10.1109/29.17564
    [10] N. Wu, Z. Y. Qu, W. J. Si, S. H. Jiao, DOA and polarization estimation using an electromagnetic vector sensor uniform circular array based on the ESPRIT algorithm, Sensors, 16 (2016), 2109. https://doi.org/10.3390/s16122109 doi: 10.3390/s16122109
    [11] H. W. Chen, J. W. Zhao, Coherent signal-subspace processing of acoustic vector sensor array for DOA estimation of wideband sources, Signal Process., 85 (2005), 837–847. https://doi.org/10.1016/j.sigpro.2004.07.030 doi: 10.1016/j.sigpro.2004.07.030
    [12] P. Palanisamy, N. Kalyanasundaram, P. M. Swetha, Two-dimensional DOA estimation of coherent signals using acoustic vector sensor array, Signal Process., 92 (2012), 19–28. https://doi.org/10.1016/j.sigpro.2011.05.021 doi: 10.1016/j.sigpro.2011.05.021
    [13] S. G. Shi, Y. Li, Z. R. Zhu, J. Shi, Real-valued robust DOA estimation method for uniform circular acoustic vector sensor arrays based on worst-case performance optimization, Appl. Acoust., 148 (2019), 495–502. https://doi.org/10.1016/j.apacoust.2018.12.014 doi: 10.1016/j.apacoust.2018.12.014
    [14] H. L. Van Trees, Optimum array processing: Part IV of detection, estimation, and modulation theory, John Wiley & Sons, 2004.
    [15] P. Stoica, K. C. Sharman, Novel eigenanalysis method for direction estimation, IEE Proc. F (Radar and Signal Process.), 137 (1990), 19–26. https://doi.org/10.1049/ip-f-2.1990.0004 doi: 10.1049/ip-f-2.1990.0004
    [16] A. Lopes, I. S. Bonatti, P. L. D. Peres, C. A. Alves, , Improving the MODEX algorithm for direction estimation, Signal Process., 83 (2003), 2047–2051. https://doi.org/10.1016/S0165-1684(03)00146-4 doi: 10.1016/S0165-1684(03)00146-4
    [17] I. Ziskind, M. Wax, Maximum likelihood localization of multiple sources by alternating projection, IEEE T. Acoust. Speech Sig. Process., 36 (1988), 1553–1560. https://doi.org/10.1109/29.7543 doi: 10.1109/29.7543
    [18] M. Feder, E. Weinstein, Parameter estimation of superimposed signals using the EM algorithm, IEEE T. Acoust. Speech Sig. Process., 36 (1988), 477–489. https://doi.org/10.1109/29.1552 doi: 10.1109/29.1552
    [19] M. I. Miller, D. R. Fuhrmann, Maximum-likelihood narrow-band direction finding and the EM algorithm, IEEE T. Acoust. Speech Sig. Process., 38 (1990), 1560–1577. https://doi.org/10.1109/29.60075 doi: 10.1109/29.60075
    [20] J. A. Fessler, A. O. Hero, Space-alternating generalized expectation-maximization algorithm, IEEE T. Signal Process., 42 (1994), 2664–2677. https://doi.org/10.1109/78.324732 doi: 10.1109/78.324732
    [21] Y. M. Liu, S. Q. Xing, Y. C. Liu, Y. Z. Li, X. S. Wang, Maximum likelihood angle estimation of target in the presence of chaff centroid jamming, IEEE Access, 6 (2018), 74416–74428. https://doi.org/10.1109/Access.2018.2882579 doi: 10.1109/Access.2018.2882579
    [22] W. H. Fang, Y. C. Lee, Y. T. Chen, Maximum likelihood 2-D DOA estimation via signal separation and importance sampling, IEEE Antenn. Wirel. Pr., 15 (2016), 746–749. https://doi.org/10.1109/Lawp.2015.2471800 doi: 10.1109/Lawp.2015.2471800
    [23] W. L. Liu, Y. J. Gong, W. N. Chen, Z. Q. Liu, H. Wang, J. Zhang, Coordinated charging scheduling of electric vehicles: A mixed-variable differential evolution approach, IEEE T. Intell. Transp., 21 (2019), 5094-5109. https://doi.org/10.1109/TITS.2019.2948596 doi: 10.1109/TITS.2019.2948596
    [24] F. Q. Zhao, X. He, L. Wang, A two-stage cooperative evolutionary algorithm with problem-specific knowledge for energy-efficient scheduling of no-wait flow-shop problem, IEEE T. Cybernetics, 51 (2020), 5291–5303. https://doi.org/10.1109/TCYB.2020.3025662 doi: 10.1109/TCYB.2020.3025662
    [25] S. C. Zhou, L. N. Xing, X. Zheng, N. Du, L. Wang, Q. F. Zhang, A self-adaptive differential evolution algorithm for scheduling a single batch-processing machine with arbitrary job sizes and release times, IEEE T. Cybernetics, 51 (2019), 1430–1442. https://doi.org/10.1109/TCYB.2019.2939219 doi: 10.1109/TCYB.2019.2939219
    [26] F. Q. Zhao, L. X. Zhao, L. Wang, H. B. Song, An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion, Expert Syst. Appl., 160 (2020), 113678. https://doi.org/10.1016/j.eswa.2020.113678 doi: 10.1016/j.eswa.2020.113678
    [27] F. Q. Zhao, R. Ma, L. Wang, A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system, IEEE T. Cybernetics, 2021, 1–12. https://doi.org/10.1109/TCYB.2021.3086181
    [28] M. Li, Y. Lu, Genetic algorithm based maximum likelihood DOA estimation, RADAR 2002, 2002,502–506. https://doi.org/10.1109/RADAR.2002.1174766
    [29] A. Sharma, S. Mathur, Comparative analysis of ML-PSO DOA estimation with conventional techniques in varied multipath channel environment, Wireless Pers. Commun., 100 (2018), 803–817. https://doi.org/10.1007/s11277-018-5350-0 doi: 10.1007/s11277-018-5350-0
    [30] Y. A. Sheikh, F. Zaman, I. M. Qureshi, M. A. ur Rehman, Amplitude and direction of arrival estimation using differential evolution, 2012 International Conference on Emerging Technologies, 2012. https://doi.org/10.1109/ICET.2012.6375456
    [31] L. Xie, T. Han, H. Zhou, Z. R. Zhang, B. Han, A. Di. Tang, Tuna swarm optimization: A novel swarm-based metaheuristic algorithm for global optimization, Comput. Intel. Neurosc., 2021 (2021), 9210050. https://doi.org/10.1155/2021/9210050. doi: 10.1155/2021/9210050
    [32] L. Boccato, R. Krummenauer, R. Attux, A. Lopes, Application of natural computing algorithms to maximum likelihood estimation of direction of arrival, Signal Process,, 92 (2012), 1338–1352. https://doi.org/10.1016/j.sigpro.2011.12.004
    [33] W. T. Shi, J. G. Huang, Y. S. Hou, Fast DOA estimation algorithm for MIMO sonar based on ant colony optimization, J. Syst. Eng. Electron., 23 (2012), 173–178. https://doi.org/10.1109/Jsee.2012.00022 doi: 10.1109/Jsee.2012.00022
    [34] Z. C. Zhang, J. Lin, Y. W. Shi, Application of artificial bee colony algorithm to maximum likelihood DOA estimation, J. Bionic Eng., 10 (2013), 100–109. https://doi.org/10.1016/S1672-6529(13)60204-8 doi: 10.1016/S1672-6529(13)60204-8
    [35] J. W. Shin, Y. J. Lee, H. N. Kim, Reduced-complexity maximum likelihood direction-of-arrival estimation based on spatial aliasing, IEEE T. Signal Process., 62 (2014), 6568–6581. https://doi.org/10.1109/Tsp.2014.2367454 doi: 10.1109/Tsp.2014.2367454
    [36] H. H. Chen, S. B. Li, J. H. Liu, Y. Q. Zhou, M. Suzukii, Efficient AM algorithms for stochastic ML estimation of DOA, Int. J. Antenn. Propag., 2016 (2016), 4926496. https://doi.org/10.1155/2016/4926496. doi: 10.1155/2016/4926496
    [37] P. Wang, Y. J. Kong, X. F. He, M. X. Zhang, X. H. Tan, An improved squirrel search algorithm for maximum likelihood DOA estimation and application for MEMS vector hydrophone array, IEEE Access, 7 (2019), 118343–118358. https://doi.org/10.1109/Access.2019.2936823 doi: 10.1109/Access.2019.2936823
    [38] A. R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired from weed colonization. Ecol. Inform., 1 (2006), 355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003
    [39] J. Yan, W. X. He, X. L. Jiang, Z. L. Zhang, A novel phase performance evaluation method for particle swarm optimization algorithms using velocity-based state estimation, Appl. Soft Comput., 57 (2017), 517–525. https://doi.org/10.1016/j.asoc.2017.04.035. doi: 10.1016/j.asoc.2017.04.035
    [40] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, M. F. Tasgetiren, Differential evolution algorithm with ensemble of parameters and mutation strategies, Appl. Soft Comput., 11 (2011), 1679–1696. https://doi.org/10.1016/j.asoc.2010.04.024 doi: 10.1016/j.asoc.2010.04.024
    [41] B. Bai, Z. M. Ren, J. W. Ding, W. Xu, G. J. Zhang, J. Liu, et al., Cross-supported planar MEMS vector hydrophone for high impact resistance, Sensors Actuat. A-Phys., 263 (2017), 563–570. https://doi.org/10.1016/j.sna.2017.06.010 doi: 10.1016/j.sna.2017.06.010
    [42] G. J. Zhang, J. W. Ding, W. Xu, Y. Liu, R. X. Wang, J. J. Han, et al., Design and optimization of stress centralized MEMS vector hydrophone with high sensitivity at low frequency, Mech. Syst. Signal Pr., 104 (2018), 607–618. https://doi.org/10.1016/j.ymssp.2017.11.027 doi: 10.1016/j.ymssp.2017.11.027
    [43] M. R. Liu, L. Nie, G. J. Zhang, W. D. Zhang, J. Zou, Realization of a composite MEMS hydrophone without left-right ambiguity, Sensors Actuat. A-Phys., 272 (2018), 231–241. https://doi.org/10.1016/j.sna.2018.01.061 doi: 10.1016/j.sna.2018.01.061
    [44] Q. D. Xu, G. J. Zhang, J. W. Ding, R. X. Wang, Y. Pei, Z. M. Ren, et al., Design and implementation of two-component cilia cylinder MEMS vector hydrophone, Sensors Actuat. A-Phys., 277 (2018), 142–149. https://doi.org/10.1016/j.sna.2018.05.005 doi: 10.1016/j.sna.2018.05.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2117) PDF downloads(107) Cited by(4)

Article outline

Figures and Tables

Figures(11)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog