Research article

Best proximity point results for Prešić type nonself operators in $ b $-metric spaces

  • Received: 22 December 2021 Revised: 11 March 2022 Accepted: 21 March 2022 Published: 31 March 2022
  • MSC : 46S40, 47H10, 54H25

  • The present work is about the existence of best proximity points for Prešić type nonself operators in $ b $-metric spaces. In order to elaborate the results an example is presented. Moreover, some interesting formulations of Prešić fixed point results are also established. In addition a result in double controlled metric type space is also formulated.

    Citation: Samina Batul, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer, Suhad Subhi Aiadi. Best proximity point results for Prešić type nonself operators in $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(6): 10711-10730. doi: 10.3934/math.2022598

    Related Papers:

  • The present work is about the existence of best proximity points for Prešić type nonself operators in $ b $-metric spaces. In order to elaborate the results an example is presented. Moreover, some interesting formulations of Prešić fixed point results are also established. In addition a result in double controlled metric type space is also formulated.



    加载中


    [1] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
    [2] M. U. Ali, H. Aydi, M. Alansari, New generalizations of set valued interpolative Hardy-Rogers type contractions in $b$-metric spaces, J. Funct. Space., 2021 (2021), 6641342. https://doi.org/10.1155/2021/6641342 doi: 10.1155/2021/6641342
    [3] M. U. Ali, M. Farheen, T. Kamran, G. Maniu, Pre$\hat{\text{s}}$i$\acute{c}$ type nonself operators and related best proximity results, Mathematics, 7 (2019), 394. https://doi.org/10.3390/math7050394 doi: 10.3390/math7050394
    [4] M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in $b$-metric spaces via new fixed point theorem, Nonlinear Anal. Model., 22 (2017), 17–30. http://dx.doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2
    [5] M. U. Ali, T. Kamran, Multivalued $F$-contraction and related fixed point theorems with application, Filomat, 30 (2016), 3779–3793.
    [6] H. H. Al-Sulami, N. Hussain, J. Ahmad, Best proximity results with applications to nonlinear dynamical systems, Mathematics, 7 (2019), 900. https://doi.org/10.3390/math7100900 doi: 10.3390/math7100900
    [7] I. Altun, M. Aslantas, H. Sahin, KW-type nonlinear contractions and their best proximity points, Numer. Func. Anal. Opt., 42 (2021), 935–954. https://doi.org/10.1080/01630563.2021.1933526 doi: 10.1080/01630563.2021.1933526
    [8] I. Altun, H. Sahin, M. Aslantas, A new approach to fractals via best proximity point, Chaos Soliton. Fract., 146 (2021), 110850. https://doi.org/10.1016/j.chaos.2021.110850 doi: 10.1016/j.chaos.2021.110850
    [9] I. Altun, H. Sahin, D. Turkoglu, Caristi-type fixed point theorems and some generalizations on $M$-metric space, Bull. Malays. Math. Sci. Soc., 43 (2020), 2647–2657. https://doi.org/10.1007/s40840-019-00823-8 doi: 10.1007/s40840-019-00823-8
    [10] H. Aydi, M. F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak phi-contractions on $b$-metric spaces, Fixed Point Theor., 13 (2012), 337–346.
    [11] H. Aydi, M. F. Bota, E. Karapinar, S. Mitrović, A fixed point theorem for set-valued quasi-contractions in $b$-metric spaces, Fixed Point Theory Appl., 2012 (2012), 88. https://doi.org/10.1186/1687-1812-2012-88 doi: 10.1186/1687-1812-2012-88
    [12] S. Banach, Sur les opr$\acute{\text{e}}$ations dans les ensembles abstraits et leurs applications aux $\acute{\text{e}}$quations int$\acute{\text{e}}$gals, Fund. Math., 3 (1922), 133–181.
    [13] V. Bernide, M. P$\hat{\text{a}}$curar, Stability of $k$-step Fixed Point Iterative Sequence for some Pre$\hat{\text{s}}$i$\acute{c}$ type Contractive Mappings, J. Inequal. Appl., 2014 (2014), 149. https://doi.org/10.1186/1029-242X-2014-149 doi: 10.1186/1029-242X-2014-149
    [14] L. B. $\acute{\text{C}}$iri$\acute{\text{c}}$, S. B. Pre$\hat{\text{s}}$i$\acute{c}$, On Pre$\hat{\text{s}}$i$\acute{c}$ type generalization of the Banach contraction mapping principle, Acta. Math. Univ. Comenianae, LXXVI (2007), 143–147.
    [15] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 1–5.
    [16] M. Edelstein, An extension of Banach's contraction principle, P. Am. Math. Soc., 12 (1961), 7–10. https://doi.org/10.2307/2034113 doi: 10.2307/2034113
    [17] M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., s1-37 (1962), 74–79. https://doi.org/10.1112/jlms/s1-37.1.74 doi: 10.1112/jlms/s1-37.1.74
    [18] K. Fan, Extension of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969), 234–240. https://doi.org/10.1007/BF01110225 doi: 10.1007/BF01110225
    [19] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [20] J. Jachymski, The contraction principle for mappings on a metric space with a graph, P. Am. Math. Soc., 136 (2008), 1359–1373.
    [21] T. Kamran, F. Uddin, M. U. Ali, Common fixed point theorems for a family of multivalued $F$-contractions with an application to solve a system of integral equations, Glas. Mat., 52 (2017), 163–177. https://doi.org/10.3336/gm.52.1.12 doi: 10.3336/gm.52.1.12
    [22] T. Kamran, C. Vetro, M. U. Ali, M. Waheed, A fixed point theorem for G-monotone multivalued mapping with application to nonlinear integral equations, Filomat, 31 (2017), 2045–2052.
    [23] E. Karapınar, R. Ali, T. Kamran, M. U. Ali, Generalized multivalued rational type contractions, J. Adv. Math. Stud., 9 (2016), 26–36.
    [24] E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich–Rus–Ciric type contractions on partial metric spaces, Mathematics, 6 (2018), 256. https://doi.org/10.3390/math6110256 doi: 10.3390/math6110256
    [25] E. Karapinar, A. Fulga, A. Petrusel, On Istratescu type contractions in $b$-metric spaces, Mathematics, 8 (2020), 388. https://doi.org/10.3390/math8030388 doi: 10.3390/math8030388
    [26] T. Kamran, M. Postolache, A. Ghiura, S. Batul, R. Ali, The Banach contraction principle in $ C^{*} $-algebra-valued $b$-metric spaces with application, Fixed Point Theory Appl., 2016 (2016), 10. https://doi.org/10.1186/s13663-015-0486-z doi: 10.1186/s13663-015-0486-z
    [27] M. P$\hat{\text{a}}$curar, Common fixed points for almost Pre$\hat{\text{s}}$i$\acute{c}$ type operators, Carpathian J. Math., 28 (2012), 117–126.
    [28] S. B. Pre$\hat{\text{s}}$i$\acute{c}$, Sur la convergence des suites, Comptes Rendus de l'Acad. des Sci. de Paris, 260 (1965), 3828–3830.
    [29] S. Sadiq Basha, N. Shahzad, Best proximity point theorems for generalized proximal contractions, Fixed Point Theory Appl., 2012 (2012), 42. https://doi.org/10.1186/1687-1812-2012-42 doi: 10.1186/1687-1812-2012-42
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1454) PDF downloads(76) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog