Research article

Certain exponential type $ m $-convexity inequalities for fractional integrals with exponential kernels

  • Received: 09 November 2021 Revised: 29 December 2021 Accepted: 11 January 2022 Published: 19 January 2022
  • MSC : 26D15, 26A51, 26E60, 60E15

  • By applying exponential type $ m $-convexity, the Hölder inequality and the power mean inequality, this paper is devoted to conclude explicit bounds for the fractional integrals with exponential kernels inequalities, such as right-side Hadamard type, midpoint type, trapezoid type and Dragomir-Agarwal type inequalities. The results of this study are obtained for mappings $ \omega $ where $ \omega $ and $ |\omega'| $ (or $ |\omega'|^q $with $ q\geq 1 $) are exponential type $ m $-convex. Also, the results presented in this article provide generalizations of those given in earlier works.

    Citation: Hao Wang, Zhijuan Wu, Xiaohong Zhang, Shubo Chen. Certain exponential type $ m $-convexity inequalities for fractional integrals with exponential kernels[J]. AIMS Mathematics, 2022, 7(4): 6311-6330. doi: 10.3934/math.2022351

    Related Papers:

  • By applying exponential type $ m $-convexity, the Hölder inequality and the power mean inequality, this paper is devoted to conclude explicit bounds for the fractional integrals with exponential kernels inequalities, such as right-side Hadamard type, midpoint type, trapezoid type and Dragomir-Agarwal type inequalities. The results of this study are obtained for mappings $ \omega $ where $ \omega $ and $ |\omega'| $ (or $ |\omega'|^q $with $ q\geq 1 $) are exponential type $ m $-convex. Also, the results presented in this article provide generalizations of those given in earlier works.



    加载中


    [1] B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. https://doi.org/10.1016/j.cam.2018.12.030 doi: 10.1016/j.cam.2018.12.030
    [2] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, N. Akhatr, On approximately harmonic $h$-convex functions depending on a given function, Filomat, 33 (2019), 3783–3793. https://doi.org/10.2298/FIL1912783A doi: 10.2298/FIL1912783A
    [3] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Gao, Hermite-Hadamard-type inequalities via $n$-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5
    [4] M. Bombardelli, S. Varošanec, Properties of $h$-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
    [5] S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic $p$-convex functions, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2
    [6] M. R. Delavar, S. S. Dargomir, Trapezoidal type inequalities related to $h$-convex functions with applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 113 (2019), 1487–1498. https://doi.org/10.1007/s13398-018-0563-3
    [7] W. Gao, A. Kashuri, S. I. Butt, M. Tariq, A. Aslam, M. Nadeem, New inequalities via $n$-polynomial harmonically exponential type convex functions, AIMS Math., 5 (2020), 6856–6873. https://doi.org/10.3934/math.2020440 doi: 10.3934/math.2020440
    [8] M. Kadakal, İ. İ. şcan, Exponential type convexity and some related inequalities, J. Ineq. Appl., 2020 (2020), 82. https://doi.org/10.1186/s13660-020-02349-1 doi: 10.1186/s13660-020-02349-1
    [9] A. Kashuri, S. Iqbal, S. I. Butt, J. Nasir, K. S. Nisar, T. Abdeljawad, Trapezium-type inequalities for $k$-fractional integral via exponential type convexity and their applications, J. Math., 2020 (2020), 8672710. https://doi.org/10.1155/2020/8672710 doi: 10.1155/2020/8672710
    [10] A. Keten, M. Yavuz, D. Baleanu, Nonlocal cauchy problem via a fractional operator involving power kernel in banach spaces, Fractal Fractional, 3 (2019), 1–8. https://doi.org/10.3390/fractalfract3020027 doi: 10.3390/fractalfract3020027
    [11] C. Y. Luo, H. Wang, T. S. Du, Fejér-Hermite-Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications, Chaos Solitons Fractals, 131 (2020), 109547. https://doi.org/10.1016/j.chaos.2019.109547 doi: 10.1016/j.chaos.2019.109547
    [12] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 1–12. https://doi.org/10.1016/j.cam.2020.112740 doi: 10.1016/j.cam.2020.112740
    [13] R. K. Raina, On generalized wright's hypergometric functions and fractional calculus operators, East Asian Math. J., 21 (2005), 191–203.
    [14] S. Rashid, D. Baleanu, Y. M. Chu, Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems, Open Phys., 18 (2020), 478–491. https://doi.org/10.1515/phys-2020-0114 doi: 10.1515/phys-2020-0114
    [15] M. Z. Sarikaya, A. Saglam, H. Yildirm, On some Hadamard-type inequalities for $h$-convex functions, J. Math. Ineq., 2 (2008), 335–341. https://doi.org/10.7153/jmi-02-30 doi: 10.7153/jmi-02-30
    [16] L. Tirtirau, Several new Hermite-Hadamard type inequalities for expenential type convex functions, Int. J. Math. Anal., 14 (2020), 267–279. https://doi.org/10.12988/ijma.2020.912108 doi: 10.12988/ijma.2020.912108
    [17] M. Tunç, Ostrowski-type inequalities via $h$-convex functions with applications to special means, J. Ineq. Appl., 2013 (2013), 326. https://doi.org/10.1186/1029-242X-2013-326 doi: 10.1186/1029-242X-2013-326
    [18] F. Usta, H. Budak, M. Z. Sarikaya, H. Yildirm, Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel, Acta et Commen. Univ. Tart. de Math., 23 (2019), 25–36. https://doi.org/10.12697/ACUTM.2019.23.03 doi: 10.12697/ACUTM.2019.23.03
    [19] F. Usta, H. Budak, M. Z. Sarikaya, E. Zet, On generalization of trapezoid type inequalities for $s$-convex functions with generalized fractional integral operators, Filomat, 32 (2018), 2153–2171. https://doi.org/10.2298/FIL1806153U doi: 10.2298/FIL1806153U
    [20] F. Usta, H. Budak, M. Z. Sarikaya, Montgomery identities and ostrowski type inequalities for fractional integral operators, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticias, 113 (2019), 1059–1080. https://doi.org/10.1007/s13398-018-0534-8
    [21] F. Usta, H. Budak, M. Z. Sarikaya, Some new chebyshew type inequalities utilizing generalized fractional integral operators, AIMS Math., 5 (2020), 1147–1161. https://doi.org/10.3934/math.2020079 doi: 10.3934/math.2020079
    [22] S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [23] H. Wang, T. S. Du, Y. Zhang, $k$-fractional integral trapezium-like inequalities throught $(h, m)$-convex and $(\alpha, m)$-convex mappings, J. Ineq. Appl., 2017 (2017), 311. https://doi.org/10.1186/s13660-017-1586-6 doi: 10.1186/s13660-017-1586-6
    [24] H. Wang, Z. J. Wu, Certain $m$-convexity inequalities related to fractional integrals with exponentional kernels, Open Access Lib. J., 5 (2021), 1–10. https://doi.org/10.4236/oalib.1107388 doi: 10.4236/oalib.1107388
    [25] H, Wang, X. H. Zhang, Z. J. Wu, {Certain fractional integrals with exponential kernels inequalities related to Hermite-Hadamard type} (Submitted).
    [26] X. Wu, J. R. Wang, J. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 1–12. https://doi.org/10.3390/math7090845 doi: 10.3390/math7090845
    [27] A. Yokus, Construction of different types of traveling wave solutions of the relativistic wave equation associated with the schrödinger equation, Math. Mode. Num. Sim., 1 (2021), 24–31. https://doi.org/10.53391/mmnsa.2021.01.003 doi: 10.53391/mmnsa.2021.01.003
    [28] M. Yavuz, N. Sene, Fundamental calculus of the fractional derivative defined with Rabotnov exponential kernel and application to nonlinear dispersive wave model, J. Ocean Eng. Sci., 6 (2021), 196–205. https://doi.org/10.1016/j.joes.2020.10.004 doi: 10.1016/j.joes.2020.10.004
    [29] T. C. Zhou, Z. R. Yuan, H. Y. Yang, T. S. Du, Some parameterized inequalities by means of fractional integrals with exponential kernels and their applications, J. Ineq. Appl., 2020 (2020), 163. https://doi.org/10.1186/s13660-020-02430-9 doi: 10.1186/s13660-020-02430-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1543) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog