Research article Special Issues

Transient prophylaxis and multiple epidemic waves

  • Received: 06 January 2021 Revised: 21 May 2021 Accepted: 06 October 2021 Published: 10 January 2022
  • MSC : 91D10, 92D30

  • Public opinion and opinion dynamics can have a strong effect on the transmission rate of an infectious disease for which there is no vaccine. The coupling of disease and opinion dynamics however, creates a dynamical system that is complex and poorly understood. We present a simple model in which susceptible groups adopt or give up prophylactic behaviour in accordance with the influence related to pro- and con-prophylactic communication. This influence varies with disease prevalence. We observe how the speed of the opinion dynamics affects the total size and peak size of the epidemic. We find that more reactive populations will experience a lower peak epidemic size, but possibly a larger final size and more epidemic waves, and that an increase in polarization results in a larger epidemic.

    Citation: Rebecca C. Tyson, Noah D. Marshall, Bert O. Baumgaertner. Transient prophylaxis and multiple epidemic waves[J]. AIMS Mathematics, 2022, 7(4): 5616-5633. doi: 10.3934/math.2022311

    Related Papers:

  • Public opinion and opinion dynamics can have a strong effect on the transmission rate of an infectious disease for which there is no vaccine. The coupling of disease and opinion dynamics however, creates a dynamical system that is complex and poorly understood. We present a simple model in which susceptible groups adopt or give up prophylactic behaviour in accordance with the influence related to pro- and con-prophylactic communication. This influence varies with disease prevalence. We observe how the speed of the opinion dynamics affects the total size and peak size of the epidemic. We find that more reactive populations will experience a lower peak epidemic size, but possibly a larger final size and more epidemic waves, and that an increase in polarization results in a larger epidemic.



    加载中


    [1] S. Ghosh, J. Heffernan, Influenza Pandemic Waves under Various Mitigation Strategies with 2009 H1N1 as a Case Study, PLoS One, 5 (2010), e14307. http://dx.doi.org/10.1371/journal.pone.0014307 doi: 10.1371/journal.pone.0014307
    [2] A. R. Tuite, D. N. Fisman, A. L. Greer, Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada, Cmaj, 192 (2020), E497–E505.
    [3] B. M. Althouse, S. V. Scarpino, L. A. Meyers, J. W. Ayers, M. Bargsten, J. Baumbach, et al., Enhancing disease surveillance with novel data streams: challenges and opportunities, EPJ Data Sci., 4 (2015), 1–8. http://dx.doi.org/10.1140/epjds/s13688-015-0054-0 doi: 10.1140/epjds/s13688-015-0054-0
    [4] M. Roser, H. Ritchie, E. Ortiz-Ospina, J. Hasell, Coronavirus Pandemic (COVID-19), Our World in Data, 2020. Available from: https://ourworldindata.org/covid-cases
    [5] T. Oraby, O. Vasilyeva, D. Krewski, F. Lutscher, Modeling seasonal behavior changes and disease transmission with application to chronic wasting disease, J. Theor. Biol., 340 (2014), 50–59. http://dx.doi.org/10.1016/j.jtbi.2013.09.003 doi: 10.1016/j.jtbi.2013.09.003
    [6] A. Mummert, H. Weiss, L.-P. Long, J. M. Amigo, X.-F. Wan, A Perspective on Multiple Waves of Influenza Pandemics, PLoS One, 8 (2013), e60343. http://dx.doi.org/10.1371/journal.pone.0060343 doi: 10.1371/journal.pone.0060343
    [7] N. C. Grassly, C. Fraser, Seasonal infectious disease epidemiology, P. Roy. Soc. B - Biol. Sci., 273 (2006), 2541–2550. http://dx.doi.org/10.1098/rspb.2006.3604 doi: 10.1098/rspb.2006.3604
    [8] W. P. London, J. A. Yorke, Recurrent outbreaks of measles, chickenpox, and mumps.1. Seasonal-variation in contact rates, Am. J. Epidemiol., 98 (1973), 453–468. http://dx.doi.org/10.1093/oxfordjournals.aje.a121575 doi: 10.1093/oxfordjournals.aje.a121575
    [9] D. Glabska, D. Skolmowska, D. Guzek, Population-based study of the influence of the COVID-19 pandemic on hand hygiene behaviors - Polish adolescents' COVID-19 experience (PLACE-19) study, Sustainability, 12 (2020), 4930. https://doi.org/10.3390/su12124930 doi: 10.3390/su12124930
    [10] C. O'Connor, J. O. Weatherall, The misinformation age: How false beliefs spread, Yale University Press, 2019. https://doi.org/10.2307/j.ctv8jp0hk
    [11] E. Dubois, G. Blank, The echo chamber is overstated: the moderating effect of political interest and diverse media, Inf., commun. soc., 21 (2018), 729–745. https://doi.org/10.1080/1369118X.2018.1428656 doi: 10.1080/1369118X.2018.1428656
    [12] D. M. Kahan, A risky science communication environment for vaccines, Science, 342 (2013), 53–54. https://doi.org/10.1126/science.1245724 doi: 10.1126/science.1245724
    [13] B. Baumgaertner, B. J. Ridenhour, F. Justwan, J. E. Carlisle, C. R. Miller, Risk of disease and willingness to vaccinate in the United States: A population-based survey, PLoS med., 17 (2020), e1003354. https://doi.org/10.1371/journal.pmed.1003354 doi: 10.1371/journal.pmed.1003354
    [14] I. C.-H. Fung, S. Cairncross, How often do you wash your hands? A review of studies of hand-washing practices in the community during and after the SARS outbreak in 2003, Int. J. Environ. Heal. R., 17 (2007), 161–183. https://doi.org/10.1080/09603120701254276 doi: 10.1080/09603120701254276
    [15] S. Jamshidi, M. Baniasad, D. Niyogi, Global to USA country scale analysis of weather, urban density, mobility, homestay, and mask use on COVID-19, Int. J. Env. Res. Pub. Heal., 17 (2020), 7847. http://dx.doi.org/10.3390/ijerph17217847 doi: 10.3390/ijerph17217847
    [16] A. Matakos, E. Terzi, P. Tsaparas, Measuring and moderating opinion polarization in social networks, Data Min. Knowl. Disc., 31 (2017), 1480–1505. https://doi.org/10.1007/s10618-017-0527-9 doi: 10.1007/s10618-017-0527-9
    [17] J.-M. Esteban, D. Ray, On the mesaurement of polarization, econometrica, 62 (1994), 819–851. https://doi.org/10.2307/2951734 doi: 10.2307/2951734
    [18] P. Manfredi, A. d'Onofrio, Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer, New York, 2017. http://dx.doi.org/10.1007/978-1-4614-5474-8
    [19] N. Perra, D. Balcan, B. Gonçalves, A. Vespignani, Towards a characterization of behavior-disease models, PloS one, 6 (2011), e23084. https://doi.org/10.1371/journal.pone.0023084 doi: 10.1371/journal.pone.0023084
    [20] L. Mao, Predicting self-initiated preventive behavior against epidemics with an agent-based relative agreement model, J. Artif. Soc. Social S., 18 (2015), 6. https://doi.org/10.18564/jasss.2892 doi: 10.18564/jasss.2892
    [21] A. Mummert, H. Weiss, Get the news out loudly and quickly: the influence of the media on limiting emerging infectious disease outbreaks, PloS one, 8 (2013), e71692. https://doi.org/10.1371/journal.pone.0071692 doi: 10.1371/journal.pone.0071692
    [22] P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, S. Merler, Spontaneous behavioural changes in response to epidemics, J. Theor. Biol., 260 (2009), 31–40. https://doi.org/10.1016/j.jtbi.2009.04.029 doi: 10.1016/j.jtbi.2009.04.029
    [23] P. Poletti, M. Ajelli, S. Merler, Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic, Math. Biosci., 238 (2012), 80–89. https://doi.org/10.1016/j.mbs.2012.04.003 doi: 10.1016/j.mbs.2012.04.003
    [24] S. Maharaj, A. Kleczkowski, Controlling epidemic spread by social distancing: Do it well or not at all, BMC Public Health, 12 (2012), 1–16. https://doi.org/10.1186/1471-2458-12-679 doi: 10.1186/1471-2458-12-679
    [25] M. Martcheva, An Introduction to Mathematical Epidemiology, Vol. 61, Springer, 2015. https://doi.org/10.1007/978-1-4899-7612-3
    [26] S. C. Anderson, A. M. Edwards, M. Yerlanov, N. Mulberry, J. E. Stockdale, S. A. Iyaniwura, et al., Estimating the impact of COVID-19 control measures using a Bayesian model of physical distancing, medRxiv, 2020. https://doi.org/10.1101/2020.04.17.20070086 doi: 10.1101/2020.04.17.20070086
    [27] N. M. Ferguson, D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie, M. Baguelin, et al., Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand, Imperial College London, (2020). https://doi.org/10.25561/77482 doi: 10.25561/77482
    [28] L. G. Nardin, C. R. Miller, B. J. Ridenhour, S. M. Krone, P. Joyce, B. O. Baumgaertner, Planning horizon affects prophylactic decision-making and epidemic dynamics, PeerJ, 4 (2016), e2678. https://doi.org/10.7717/peerj.2678 doi: 10.7717/peerj.2678
    [29] D. Weston, K. Hauck, R. Amlôt, Infection prevention behaviour and infectious disease modelling: a review of the literature and recommendations for the future, BMC Public Health, 18 (2018), 336–351. https://doi.org/10.1186/s12889-018-5223-1 doi: 10.1186/s12889-018-5223-1
    [30] R. C. Tyson, S. D. Hamilton, A. S. Lo, B. O. Baumgaertner, S. M. Krone, The Timing and Nature of Behavioural Responses Affect the Course of an Epidemic, B. Math. Biol., 82 (2020), 1–28. https://doi.org/10.1007/s11538-019-00684-z doi: 10.1007/s11538-019-00684-z
    [31] A. K. Misra, R. K. Rai, Y. Takeuchi, Modeling the control of infectious diseases: Effects of TV and social media advertisements, Math. Biosci. Eng., 15 (2018), 1315–1343. https://doi.org/10.3934/mbe.2018061 doi: 10.3934/mbe.2018061
    [32] MATLAB, 9.8.0.1323502 (R2020a), The MathWorks Inc., Natick, Massachusetts, 2020.
    [33] M. J. Keeling, L. Danon, Mathematical modelling of infectious diseases, Brit. Med. Bull., 92 (2009), 33–42. https://doi.org/10.1093/bmb/ldp038 doi: 10.1093/bmb/ldp038
    [34] A. Huppert, G. Katriel, Mathematical modelling and prediction in infectious disease epidemiology, Clin. Microbiol. Infec., 19 (2013), 999–1005. https://doi.org/10.1111/1469-0691.12308 doi: 10.1111/1469-0691.12308
    [35] M. W. Fong, H. Gao, J. Y. Wong, J. Xiao, E. Y. C. Shiu, S. Ryu, et al., Nonpharmaceutical Measures for Pandemic Influenza in Nonhealthcare Settings—Social Distancing Measures, Emerg. Infect. Dis., 26 (2020), 976–984. https://doi.org/10.3201/eid2605.190995 doi: 10.3201/eid2605.190995
    [36] A. E. Aiello, R. M. Coulborn, V. Perez, E. L. Larson, Effect of Hand Hygiene on Infectious Disease Risk in the Community Setting: A Meta-Analysis, Am. J. Public Health, 98 (2008), 1372–1381. https://doi.org/10.2105/ajph.2007.124610 doi: 10.2105/ajph.2007.124610
    [37] T. Jefferson, R. Foxlee, C. Del Mar, L. Dooley, E. Ferroni, B. Hewak, et al., Physical interventions to interrupt or reduce the spread of respiratory viruses: systematic review, BMJ, 336 (2007), 77–80. https://doi.org/10.1136/bmj.39393.510347.be doi: 10.1136/bmj.39393.510347.be
    [38] F. Chen, A. Griffith, A. Cottrell, Y.-L. Wong, Behavioral Responses to Epidemics in an Online Experiment: Using Virtual Diseases to Study Human Behavior, PLoS ONE, 8 (2013), e52814. https://doi.org/10.1371/journal.pone.0052814
    [39] YouGov, Personal measures taken to avoid COVID-19, 2020. Available from: https://today.yougov.com/topics/international/articles-reports/2020/03/17/personal-measures-taken-avoid-covid-19
    [40] AP-NORC, Coronavirus Concerns on the Rise Again Amid Spike in New Cases, 2020. Available from: https://apnorc.org/projects/coronavirus-concerns-on-the-rise-again-amid-spike-in-new-cases/?doing_wp_cron=1598305841.2085039615631103515625
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2116) PDF downloads(82) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog