Research article

Conformal $ \eta $-Ricci solitons within the framework of indefinite Kenmotsu manifolds

  • Received: 13 October 2021 Revised: 19 December 2021 Accepted: 31 December 2021 Published: 06 January 2022
  • MSC : 53C15, 53C25, 53D10

  • The present paper is to deliberate the class of $ \epsilon $-Kenmotsu manifolds which admits conformal $ \eta $-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal $ \eta $-Ricci soliton of $ \epsilon $-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting conformal $ \eta $-Ricci solitons on $ \epsilon $-Kenmotsu manifolds. Next, we consider gradient conformal $ \eta $-Ricci solitons and we present a characterization of the potential function. Finally, we develop an illustrative example for the existence of conformal $ \eta $-Ricci soliton on $ \epsilon $-Kenmotsu manifold.

    Citation: Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya. Conformal $ \eta $-Ricci solitons within the framework of indefinite Kenmotsu manifolds[J]. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300

    Related Papers:

  • The present paper is to deliberate the class of $ \epsilon $-Kenmotsu manifolds which admits conformal $ \eta $-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal $ \eta $-Ricci soliton of $ \epsilon $-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting conformal $ \eta $-Ricci solitons on $ \epsilon $-Kenmotsu manifolds. Next, we consider gradient conformal $ \eta $-Ricci solitons and we present a characterization of the potential function. Finally, we develop an illustrative example for the existence of conformal $ \eta $-Ricci soliton on $ \epsilon $-Kenmotsu manifold.



    加载中


    [1] E. Barbosa, J. E. Ribeiro, On conformal solutions of the Yamabe flow, Arch. Math., 101 (2013), 79–89. https://doi.org/10.1007/s00013-013-0533-0 doi: 10.1007/s00013-013-0533-0
    [2] A. Barros, J. E. Ribeiro, Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140 (2012), 1033–1040. https://doi.org/10.1090/S0002-9939-2011-11029-3 doi: 10.1090/S0002-9939-2011-11029-3
    [3] A. Barros, R. Batista, J. E. Ribeiro, Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh Math., 174 (2014), 29–39. https://doi.org/10.1007/s00605-013-0581-3 doi: 10.1007/s00605-013-0581-3
    [4] A. M. Blaga, Almost $\eta$-Ricci solitons in $(LCS)_n$-manifolds, B. Belg. Math. Soc.-Sim., 25 (2018), 641–653. https://doi.org/10.36045/bbms/1547780426 doi: 10.36045/bbms/1547780426
    [5] A. M. Blaga, $\eta$-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1–13. https://doi.org/10.1111/nep.12552_10 doi: 10.1111/nep.12552_10
    [6] N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Glo. J. Adv. Res. Clas. Mod. Geom., 4 (2015), 15–21.
    [7] A. Bejancu, K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Sci., 16 (1993), 545–556. https://doi.org/10.1155/S0161171293000675 doi: 10.1155/S0161171293000675
    [8] G. Calvaruso, A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys., 98 (2015), 1–12. https://doi.org/10.1016/j.geomphys.2015.07.021 doi: 10.1016/j.geomphys.2015.07.021
    [9] J. T. Cho, R. Sharma, Contact geometry and Ricci solitons, Int. J. Geom. Methods M., 7 (2010), 951–960.
    [10] C. Calin, M. Crasmareanu, $\eta$-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roum. Math. Pures, 57 (2012), 53–63.
    [11] H. D. Cao, B. Chow, Recent developments on the Ricci flow, Bull. Amer. Math. Soc., 36 (1999), 59–74. https://doi.org/10.1090/S0273-0979-99-00773-9 doi: 10.1090/S0273-0979-99-00773-9
    [12] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space forms, Tohoku Math. J., 36 (2009), 205–212.
    [13] S. Dey, S. Roy, $*$-$\eta$-Ricci Soliton within the framework of Sasakian manifold, J. Dyn. Syst. Geom. The., 18 (2020), 163–181.
    [14] U. C. De, A. Sarkar, On $\epsilon$-Kenmotsu manifold, Hardonic J., 32 (2009), 231–242. https://doi.org/10.5414/ALP32242 doi: 10.5414/ALP32242
    [15] T. Dutta, N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Lorentzian $\alpha$-Sasakian manifolds, Acta Univ. Palac. Olomuc. Fac. Rerum Natur. Math., 55 (2016), 57–70.
    [16] A. E. Fischer, An introduction to conformal Ricci flow, Clas. Quan. Grav., 21 (2004), 171–218. https://doi.org/10.1016/S0022-5347(18)38074-1 doi: 10.1016/S0022-5347(18)38074-1
    [17] D. Ganguly, S. Dey, A. Ali, A. Bhattacharyya, Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form, J. Geom. Phys., 169 (2021), 104339. https://doi.org/10.1142/S1793557122500358 doi: 10.1142/S1793557122500358
    [18] D. Ganguly, Kenmotsu metric as conformal $\eta$-Ricci soliton, 2021.
    [19] A. Gray, Einstein like manifolds which are not Einstein, Goem. Dedicata, 7 (1978), 259–280.
    [20] A. Haseeb, Some results on projective curvature tensor in an $\epsilon$-Kenmotsu manifold, Palestine J. Math., 6 (2017), 196–203.
    [21] A. Haseeb, M. A. Khan, M. D. Siddiqi, Some more results on an $\epsilon$-Kenmotsu manifold with a semi-symmetric metric connection, Acta Math. Univ. Comen., 85 (2016), 9–20.
    [22] R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255–306. https://doi.org/10.1086/wp.17.4.1180866 doi: 10.1086/wp.17.4.1180866
    [23] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys Diff. Geom., 1995, 7–136.
    [24] S. K. Hui, S. K. Yadav, A. Patra, Almost conformal Ricci solitons on $f$-Kenmotsu manifolds, Khayyam J. Math., 5 (2019), 89–104.
    [25] K. Kenmotsu, A class of almost contact Riemannian manifold, Tohoku Math. J., 24 (1972), 93–103. https://doi.org/10.1016/0022-460X(72)90125-3 doi: 10.1016/0022-460X(72)90125-3
    [26] Y. L. Li, M. A. Lone, U. A. Wani, Biharmonic submanifolds of Kaehler product manifolds, AIMS Math., 6 (2021), 9309–9321. https://doi.org/10.3934/math.2021541 doi: 10.3934/math.2021541
    [27] Y. L. Li, A. Ali, R. Ali, A general inequality for CR-warped products in generalized Sasakian space form and its applications, Adv. Math. Phys., 2021 (2021), 5777554. https://doi.org/10.1155/2021/5777554 doi: 10.1155/2021/5777554
    [28] Y. L. Li, A. H. Alkhaldi, A. Ali, Geometric mechanics on warped product semi-slant submanifold of generalized complex space forms, Adv. Math. Phys., 2021 (2021), 5900801. https://doi.org/10.1155/2021/5900801 doi: 10.1155/2021/5900801
    [29] Y. L. Li, A. Ali, F. Mofarreh, A. Abolarinwa, R. Ali, Some eigenvalues estimate for the $\phi$-Laplace operator on slant submanifolds of Sasakian space forms, J. Funct. Space., 2021 (2021), 6195939. https://doi.org/10.1155/2021/6195939 doi: 10.1155/2021/6195939
    [30] Y. L. Li, F. Mofarreh, N. Alluhaibi, Homology groups in warped product submanifolds in hyperbolic spaces, J. Math., 2021 (2021), 8554738. https://doi.org/10.1155/2021/8554738 doi: 10.1155/2021/8554738
    [31] Y. L. Li, L. I. Pişcoran, A. Ali, A. H. Alkhaldi, Null homology groups and stable currents in warped product submanifolds of Euclidean spaces, Symmetry, 13 (2021). https://doi.org/10.3390/sym13091587 doi: 10.3390/sym13091587
    [32] Y. L. Li, S. Y. Liu, Z. G. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., 301 (2021), 107526. doi:10.1016/j.topol.2020.107526 doi: 10.1016/j.topol.2020.107526
    [33] Y. L. Li, Z. G. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 1–11. https://doi.org/10.1016/j.geomphys.2021.104188 doi: 10.1016/j.geomphys.2021.104188
    [34] Y. L. Li, Z. G. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Al., 31 (2021), 1–19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1
    [35] Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods M., 18 (2021), 1–31. https://doi.org/10.1142/S0219887821500080 doi: 10.1142/S0219887821500080
    [36] Y. L. Li, Z. G. Wang, T. H. Zhao, Slant helix of order n and sequence of darboux developables of principal-directional curves, Math. Methods Appl. Sci., 43 (2020), 9888–9903. https://doi.org/10.1002/mma.6663 doi: 10.1002/mma.6663
    [37] Y. L. Li, A. H. Alkhaldi, A. Ali, L. I. Pişcoran, On the topology of warped product pointwise semi-slant submanifolds with positive curvature, Mathematics, 9 (2021). https://doi.org/10.3390/math9243156 doi: 10.3390/math9243156
    [38] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.
    [39] G. P. Pokhariyal, R. S. Mishra, The curvature tensor and their relativistic significance, Yokohoma Math. J., 18 (1970), 105–108. https://doi.org/10.1501/Ilhfak_0000001354 doi: 10.1501/Ilhfak_0000001354
    [40] S. Roy, A. Bhattacharyya, Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold, Jordan J. Math. Statis., 13 (2020), 89–109.
    [41] S. Roy, S. Dey, A. Bhattacharyya, S. K. Hui, $*$-Conformal $\eta$-Ricci Soliton on Sasakian manifold, Asian-Eur. J. Math., 2021, 2250035. https://doi.org/10.1142/S1793557122500358 doi: 10.1142/S1793557122500358
    [42] S. Roy, S. Dey, A. Bhattacharyya, Yamabe Solitons on $(LCS)_{n}$-manifolds, J. Dyn. Syst. Geom. The., 18 (2020), 261–279. https://doi.org/10.1080/1726037X.2020.1868100 doi: 10.1080/1726037X.2020.1868100
    [43] S. Roy, S. Dey, A. Bhattacharyya, Some results on $\eta$-Yamabe Solitons in 3-dimensional trans-Sasakian manifold, 2020.
    [44] S. Roy, S. Dey, A. Bhattacharyya, Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton, 2021.
    [45] S. Roy, S. Dey, A. Bhattacharyya, Conformal Einstein soliton within the framework of para-Kähler manifold, Diff. Geom. Dyn. Syst., 23 (2021), 235–243.
    [46] S. Roy, S. Dey, A. Bhattacharyya, A Kenmotsu metric as a conformal $\eta$-Einstein soliton, Carpathian Math. Publ., 13 (2021), 110–118. https://doi.org/10.15330/cmp.13.1.110-118 doi: 10.15330/cmp.13.1.110-118
    [47] S. Roy, S. Dey, A. Bhattacharyya, Conformal Yamabe soliton and $*$-Yamabe soliton with torse forming potential vector field, 2021.
    [48] S. Sarkar, S. Dey, $*$-Conformal $\eta$-Ricci Soliton within the framework of Kenmotsu manifolds, 2021.
    [49] S. Sarkar, S. Dey, A. Bhattacharyya, Ricci solitons and certain related metrics on 3-dimensional trans-Sasakian manifold, 2021.
    [50] S. Sarkar, S. Dey, X. Chen, Certain results of conformal and $*$-conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds, Filomat, 2021.
    [51] M. D. Siddiqi, Conformal $\eta$-Ricci solitons in $\delta$-Lorentzian trans Sasakian manifolds, Int. J. Maps Math., 1 (2018), 15–34.
    [52] R. N. Singh, S. K. Pandey, G. Pandey, K. Tiwari, On a semi-symmetric metric connection in an $\epsilon$-Kenmotsu manifold, Commun. Korean Math. Soc., 29 (2014), 331–343. https://doi.org/10.4134/CKMS.2014.29.2.331 doi: 10.4134/CKMS.2014.29.2.331
    [53] X. Xu, X. Chao, Two theorems on $\epsilon$-Sasakian manifolds, Int. J. Math. Sci., 21 (1998), 249–254.
    [54] K. Yano, Concircular geometry I. Concircular transformations, Proc. Impe. Acad. Tokyo., 16 (1940), 195–200. https://doi.org/10.3792/pia/1195579139 doi: 10.3792/pia/1195579139
    [55] K. Yano, M. Kon, Structures on manifolds, Ser. Pure Math., 1984.
    [56] K. Yano, On torse-forming directions in Riemannian spaces, Proc. Impe. Acad. Tokyo., 20 (1944), 701–705. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2350) PDF downloads(86) Cited by(49)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog