Research article Special Issues

Fractional order COVID-19 model with transmission rout infected through environment

  • Received: 10 September 2021 Revised: 02 November 2021 Accepted: 21 November 2021 Published: 04 January 2022
  • MSC : 37C75, 65L07, 93B05

  • In this paper, we study a fractional order COVID-19 model using different techniques and analysis. The sumudu transform is applied with the environment as a route of infection in society to the proposed fractional-order model. It plays a significant part in issues of medical and engineering as well as its analysis in community. Initially, we present the model formation and its sensitivity analysis. Further, the uniqueness and stability analysis has been made for COVID-19 also used the iterative scheme with fixed point theorem. After using the Adams-Moulton rule to support our results, we examine some results using the fractal fractional operator. Demonstrate the numerical simulations to prove the efficiency of the given techniques. We illustrate the visual depiction of sensitive parameters that reveal the decrease and triumph over the virus within the network. We can reduce the virus by the appropriate recognition of the individuals in community of Saudi Arabia.

    Citation: Shao-Wen Yao, Muhammad Farman, Maryam Amin, Mustafa Inc, Ali Akgül, Aqeel Ahmad. Fractional order COVID-19 model with transmission rout infected through environment[J]. AIMS Mathematics, 2022, 7(4): 5156-5174. doi: 10.3934/math.2022288

    Related Papers:

  • In this paper, we study a fractional order COVID-19 model using different techniques and analysis. The sumudu transform is applied with the environment as a route of infection in society to the proposed fractional-order model. It plays a significant part in issues of medical and engineering as well as its analysis in community. Initially, we present the model formation and its sensitivity analysis. Further, the uniqueness and stability analysis has been made for COVID-19 also used the iterative scheme with fixed point theorem. After using the Adams-Moulton rule to support our results, we examine some results using the fractal fractional operator. Demonstrate the numerical simulations to prove the efficiency of the given techniques. We illustrate the visual depiction of sensitive parameters that reveal the decrease and triumph over the virus within the network. We can reduce the virus by the appropriate recognition of the individuals in community of Saudi Arabia.



    加载中


    [1] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [2] A. Atangana, Non validity of index law in fractional calculus, a fractional differential operator with markovian and non-markovian properties, Physica A, 505 (2018), 688–706. http://dx.doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
    [3] D. Baleanu, A. Jajarmi, E. Bonyah, M. Hajipour, New aspects of poor nutrition in the life cycle within the fractional calculus, Adv. Differ. Equ., 2018 (2018), 230. http://dx.doi.org/10.1186/s13662-018-1684-x doi: 10.1186/s13662-018-1684-x
    [4] S. Ullah, M. A. Khan, M. Farooq, A fractional model for the dynamics of TB virus, Chaos Soliton. Fract., 116 (2018), 63–71. http://dx.doi.org/10.1016/j.chaos.2018.09.001 doi: 10.1016/j.chaos.2018.09.001
    [5] S. Ullah, M. A. Khan, M. Farooq, Modeling and analysis of the fractional HBV model with atangana-baleanu derivative, Eur. Phys. J. Plus, 133 (2018), 313. http://dx.doi.org/10.1140/epjp/i2018-12120-1 doi: 10.1140/epjp/i2018-12120-1
    [6] Fatmawati, M. A. Khan, M. Azizah, Windarto, S. Ullah, A fractional model for the dynamics of competition between commercial and rural banks in indonesia, Chaos Soliton. Fract., 122 (2019), 32–46. http://dx.doi.org/10.1016/j.chaos.2019.02.009 doi: 10.1016/j.chaos.2019.02.009
    [7] M. Farman, M. U. Saleem, M. F. Tabassum, A. Ahmad, M. O. Ahmad, A linear control of composite model for glucose insulin glucagon, Ain Shams Eng. J., 10 (2019), 867–872. http://dx.doi.org/10.1016/j.asej.2019.04.001 doi: 10.1016/j.asej.2019.04.001
    [8] K. A. Golmankhaneh, C. Tunç, Sumudu transform in fractal calculus, Appl. Math. Comput., 350 (2019), 386–401. http://dx.doi.org/10.1016/j.amc.2019.01.025 doi: 10.1016/j.amc.2019.01.025
    [9] M. Goyal, H. Mehmet Baskonus, A. Prakash, An efficient technique for a time fractional model of lassa hemorrhagic fever spreading in pregnant women, Eur. Phys. J. Plus, 134 (2019), 482. http://dx.doi.org/10.1140/epjp/i2019-12854-0 doi: 10.1140/epjp/i2019-12854-0
    [10] S. Zhao, H. Chen, Modeling the epidemic dynamics and control of covid-19 outbreak in China, Quant. Biol., 8 (2020), 11–19. http://dx.doi.org/10.1007/s40484-020-0199-0 doi: 10.1007/s40484-020-0199-0
    [11] S. Ullah, M. A. Khan, M. Farooq, Z. Hammouch, D. Baleanu, A fractional model for the dynamics of tuberculosis infection using caputo-fabrizio derivative, Discrete Cont. Dyn. Sys. S, 13 (2020), 975–993. http://dx.doi.org/10.3934/dcdss.2020057 doi: 10.3934/dcdss.2020057
    [12] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. http://dx.doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [13] M. Rahman, M. Arfan, k. Shah, J. F. Gómez-Aguilar, Investigating a nonlinear dynamical model of covid-19 disease under fuzzy Caputo, random and ABC fractional-order derivative, Chaos Soliton. Fract., 140 (2020), 110232. http://dx.doi.org/10.1016/j.chaos.2020.110232 doi: 10.1016/j.chaos.2020.110232
    [14] N. H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for covid-19 transmission by using the Caputo fractional derivative, Chaos Soliton. Fract., 140 (2020), 110107. http://dx.doi.org/10.1016/j.chaos.2020.110107 doi: 10.1016/j.chaos.2020.110107
    [15] F. S. Alshammari, A mathematical model to investigate the transmission of COVID-19 in the kingdom of Saudi Arabia, Comput. Math. Methods Med., 2020 (2020), 9136157. http://dx.doi.org/10.1155/2020/9136157 doi: 10.1155/2020/9136157
    [16] A. Prakash, M. Goyal, H. M. Baskonus, S. Gupta, A reliable hybrid numerical method for a time dependent vibration model of arbitrary order, AIMS Mathematics, 5 (2020), 979–1000. http://dx.doi.org/10.3934/math.2020068 doi: 10.3934/math.2020068
    [17] C. Tunc, A. K. Golmankhaneh, On stability of a class of second alpha-order fractal differential equations, AIMS Mathematics, 5 (2020), 2126–2142. http://dx.doi.org/10.3934/math.2020141 doi: 10.3934/math.2020141
    [18] M. Hamid, M. Usman, R. U. Haq, W. Wang, A Chelyshkov polynomial based algorithm to analyze the transport dynamics and anomalous diffusion in fractional model, Physica A, 551 (2020), 124227. http://dx.doi.org/10.1016/j.physa.2020.124227 doi: 10.1016/j.physa.2020.124227
    [19] M. Goyal, H. M. Baskonus, A. Prakash, Regarding new positive, bounded and convergent numerical solution of nonlinear time fractional HIV/AIDS transmission model, Chaos Soliton. Fract., 139 (2020), 110096. http://dx.doi.org/10.1016/j.chaos.2020.110096 doi: 10.1016/j.chaos.2020.110096
    [20] M. Hamid, M. Usman, W. Wang, Z. Tian, Hybrid fully spectral linearized scheme for time‐fractional evolutionary equations, Math. Meth. Appl. Sci., 44 (2021), 3890–3912. http://dx.doi.org/10.1002/mma.6996 doi: 10.1002/mma.6996
    [21] M. Farman, M. U. Saleem, A. Ahmad, S. Imtiaz, M. F. Tabassum, S. Akram, et al., A control of glucose level in insulin therapies for the development of artificial pancreas by Atangana Baleanu fractional derivative, Alex. Eng. J., 59 (2020), 2639–2648. http://dx.doi.org/10.1016/j.aej.2020.04.027 doi: 10.1016/j.aej.2020.04.027
    [22] M. U. Saleem, M. Farman, A. Ahmad, E. U. Haque, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulintherapies for diabetes, Ain Shams Eng. J., 11 (2020), 1309–1316. http://dx.doi.org/10.1016/j.asej.2020.03.006 doi: 10.1016/j.asej.2020.03.006
    [23] M. Farman, A. Akgül, A. Ahmad, D. Baleanu, M. U. Saleem, Dynamical transmission of coronavirus model with analysis and simulation, CMES-Comput. Model. Eng. Sci., 127 (2021), 753–769. http://dx.doi.org/10.32604/cmes.2021.014882 doi: 10.32604/cmes.2021.014882
    [24] M. Farman, A. Ahmad, A. Akgül, M. U. Saleem, M. Naeem, D. Baleanu, Epidemiological analysis of the coronavirus disease outbreak with random effects, CMC-Comput. Mater. Con., 67 (2021), 3215–3227. http://dx.doi.org/10.32604/cmc.2021.014006 doi: 10.32604/cmc.2021.014006
    [25] M. Aslam, M. Farman, A. Akgül, M. Sun, Modeling and simulation of fractional order COVID-19 model with quarantined-isolated people, Math. Meth. Appl. Sci., 44 (2021), 6389–6405. http://dx.doi.org/10.1002/mma.7191 doi: 10.1002/mma.7191
    [26] M. Aslam, M. Farman, A. Akgül, A. Ahmad, M. Sun, Generalized form of fractional order COVID-19 model with Mittag-Leffler kernel, Math. Meth. Appl. Sci., 44 (2021), 8598–8614. http://dx.doi.org/10.1002/mma.7286 doi: 10.1002/mma.7286
    [27] M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 214. http://dx.doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [28] V. Padmavathi. A. Prakash, K. Alagesan, N. Magesh, Analysis and numerical simula-tion of novel coronavirus (COVID-19) model with Mittag-Leffler Kernel, Math. Meth. Appl. Sci., 44 (2021), 1863–1877. http://dx.doi.org/10.1002/mma.6886 doi: 10.1002/mma.6886
    [29] M. Usman, M. Hamid, M. Liu, Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions, Chaos Soliton. Fract., 144 (2021), 110701. http://dx.doi.org/10.1016/j.chaos.2021.110701 doi: 10.1016/j.chaos.2021.110701
    [30] A. Prakash, H. Kaur, Analysis and numerical simulation of fractional Biswas–Milovic model, Math. Comput. Simulat., 181 (2021), 298–315. http://dx.doi.org/10.1016/j.matcom.2020.09.016 doi: 10.1016/j.matcom.2020.09.016
    [31] M. Hamid, M. Usman, R. Haq, Z. Tian, A spectral approach to analyze the nonlinear oscillatory fractional-order differential equations, Chaos Soliton. Fract., 146 (2021), 110921. http://dx.doi.org/10.1016/j.chaos.2021.110921 doi: 10.1016/j.chaos.2021.110921
    [32] M. Mehmood, M. Hamid, S. Ashraf, Z. Tian, Galerkin time discretization for transmission dynamics of HBV with non-linear saturated incidence rate, Appl. Math. Comput., 410 (2021), 126481. http://dx.doi.org/10.1016/j.amc.2021.126481 doi: 10.1016/j.amc.2021.126481
    [33] M. Amin, M. Farman, A. Akgül, R. T. Alqahtani, Effect of vaccination to control COVID-19 with fractal fractional operator, Alex. Eng. J., 61 (2022), 3551–3557. http://dx.doi.org/10.1016/j.aej.2021.09.006 doi: 10.1016/j.aej.2021.09.006
    [34] M. Higazy, F. M. Allehiany, E. E. Mahmoud, Numerical study of fractional order COVID-19 pandemic transmission model in context of ABO blood group, Results Phys., 22 (2021), 103852. http://dx.doi.org/10.1016/j.rinp.2021.103852 doi: 10.1016/j.rinp.2021.103852
    [35] M. Caputo, M. Fabrizio, A new definition of fractional derivatives without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 1–13.
    [36] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
    [37] A. Atangana, E. Bonyah, A. A. Elsadany, A fractional order optimal 4D chaotic financial model with Mittag-Leffler law, Chinese J. Phys., 65 (2020), 38–53. http://dx.doi.org/10.1016/j.cjph.2020.02.003 doi: 10.1016/j.cjph.2020.02.003
    [38] E. Alzahrani, M. M. El-Dessoky, D. Baleanu, Mathematical modeling and analysis of the novel Coronavirus using Atangana-Baleanu derivative, Results Phys., 25 (2021), 104240. http://dx.doi.org/10.1016/j.rinp.2021.104240 doi: 10.1016/j.rinp.2021.104240
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2042) PDF downloads(99) Cited by(17)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog