Research article

The Green's function for Caputo fractional boundary value problem with a convection term

  • Received: 25 October 2021 Revised: 09 December 2021 Accepted: 14 December 2021 Published: 28 December 2021
  • MSC : 34A08, 34B27, 35B50

  • By using the operator theory, we establish the Green's function for Caputo fractional differential equation under Sturm-Liouville boundary conditions. The results are new, the method used in this paper will provide some new ideas for the study of this kind of problems and easy to be generalized to solving other problems.

    Citation: Youyu Wang, Xianfei Li, Yue Huang. The Green's function for Caputo fractional boundary value problem with a convection term[J]. AIMS Mathematics, 2022, 7(4): 4887-4897. doi: 10.3934/math.2022272

    Related Papers:

  • By using the operator theory, we establish the Green's function for Caputo fractional differential equation under Sturm-Liouville boundary conditions. The results are new, the method used in this paper will provide some new ideas for the study of this kind of problems and easy to be generalized to solving other problems.



    加载中


    [1] R. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math., 109 (2010), 973–1033. https://doi.org/10.1007/s10440-008-9356-6 doi: 10.1007/s10440-008-9356-6
    [2] M. Benchohra, J. Graef, S. Hamani, Existence results for boundary value problems with non-linear fractional differential equations, Appl. Anal., 87 (2008), 851–863. https://doi.org/10.1080/00036810802307579 doi: 10.1080/00036810802307579
    [3] S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Eq., 2006 (2006), 36.
    [4] M. Al-Refai, Basic results on nonlinear eigenvalue problems of fractional order, Electron. J. Differ. Eq., 2012 (2012), 191.
    [5] M. Al-Refai, On the fractional derivatives at extreme points, Electron. J. Qual. Theory Differ. Equ., 2012 (2012), 55.
    [6] X. Meng, M. Stynes, The Green function and a maximum principle for a Caputo two-point boundary value problem with a convection term, J. Math. Anal. Appl., 461 (2018), 198–218. https://doi.org/10.1016/j.jmaa.2018.01.004 doi: 10.1016/j.jmaa.2018.01.004
    [7] Z. Bai, S. Sun, Z. Du, Y. Chen, The Green function for a class of Caputo fractional differential equations with a convection term, Fract. Calc. Appl. Anal., 23 (2020), 787–798. https://doi.org/10.1515/fca-2020-0039 doi: 10.1515/fca-2020-0039
    [8] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2190) PDF downloads(192) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog