Research article Special Issues

Gap solitons in periodic difference equations with sign-changing saturable nonlinearity

  • Received: 29 June 2022 Revised: 31 July 2022 Accepted: 08 August 2022 Published: 25 August 2022
  • MSC : 65Q10, 39A60

  • In this paper, we consider the existence of gap solitons for a class of difference equations:

    $ \begin{equation*} Lu_{n}-\omega u_{n} = f_{n}(u_{n}), n\in\mathbb{Z}, \end{equation*} $

    where $ Lu_{n} = a_{n}u_{n+1}+a_{n-1}u_{n-1}+b_{n}u_{n} $ is the discrete difference operator in one spatial dimension, $ \{a_{n}\} $ and $ \{b_{n}\} $ are real valued T-periodic sequences, $ \omega\in \mathbb{R} $, $ f_{n}(\cdot)\in C(\mathbb{R}, \mathbb{R}) $ and $ f_{n+T}(\cdot) = f_{n}(\cdot) $ for each $ n\in\mathbb{Z} $. Under general asymptotically linear conditions on the nonlinearity $ f_{n}(\cdot) $, we establish the existence of gap solitons for the above equation via variational methods when $ t f_{n}(t) $ is allowed to be sign-changing. Our methods further extend and improve the existing results.

    Citation: Zhenguo Wang, Yuanxian Hui, Liuyong Pang. Gap solitons in periodic difference equations with sign-changing saturable nonlinearity[J]. AIMS Mathematics, 2022, 7(10): 18824-18836. doi: 10.3934/math.20221036

    Related Papers:

  • In this paper, we consider the existence of gap solitons for a class of difference equations:

    $ \begin{equation*} Lu_{n}-\omega u_{n} = f_{n}(u_{n}), n\in\mathbb{Z}, \end{equation*} $

    where $ Lu_{n} = a_{n}u_{n+1}+a_{n-1}u_{n-1}+b_{n}u_{n} $ is the discrete difference operator in one spatial dimension, $ \{a_{n}\} $ and $ \{b_{n}\} $ are real valued T-periodic sequences, $ \omega\in \mathbb{R} $, $ f_{n}(\cdot)\in C(\mathbb{R}, \mathbb{R}) $ and $ f_{n+T}(\cdot) = f_{n}(\cdot) $ for each $ n\in\mathbb{Z} $. Under general asymptotically linear conditions on the nonlinearity $ f_{n}(\cdot) $, we establish the existence of gap solitons for the above equation via variational methods when $ t f_{n}(t) $ is allowed to be sign-changing. Our methods further extend and improve the existing results.



    加载中


    [1] W. G. Kelly, A. C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, San Diego, New York Basel, 1991.
    [2] Y. H. Long, L. Wang, Global dynamics of a delayed two-patch discrete SIR disease model, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105117. https://doi.org/10.1016/j.cnsns.2019.105117 doi: 10.1016/j.cnsns.2019.105117
    [3] J. S. Yu, J. Li, Discrete-time models for interactive wild and sterile mosquitoes with general time steps, Math. Biosci., 346 (2022), 108797. https://doi.org/10.1016/j.mbs.2022.108797 doi: 10.1016/j.mbs.2022.108797
    [4] B. Zheng, J. S. Yu, Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency, Adv. Nonlinear Anal., 11 (2022), 212–224. https://doi.org/10.1515/anona-2020-0194 doi: 10.1515/anona-2020-0194
    [5] Y. H. Long, H. Zhang, Three nontrivial solutions for second-order partial difference equation via morse theory, J. Funct. Spaces, 2022 (2022), 1564961. https://doi.org/10.1155/2022/1564961 doi: 10.1155/2022/1564961
    [6] Y. H. Long, X. Q. Deng, Existence and multiplicity solutions for discrete Kirchhoff type problems, Appl. Math. Lett., 126 (2022), 107817. https://doi.org/10.1016/j.aml.2021.107817 doi: 10.1016/j.aml.2021.107817
    [7] Y. H. Long, Multiple results on nontrivial solutions of discrete Kirchhoff type problems, J. Appl. Math. Comput., 2022 (2022), 1–17. https://doi.org/10.1007/s12190-022-01731-0 doi: 10.1007/s12190-022-01731-0
    [8] Y. H. Long, Nontrivial solutions of discrete Kirchhoff type problems via Morse theory, Adv. Nonlinear Anal., 11 (2022), 1352–1364. https://doi.org/10.1515/anona-2022-0251 doi: 10.1515/anona-2022-0251
    [9] D. N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature., 424 (2003), 817–823.
    [10] X. Liu, B. A. Malomed, J. Zeng, Localized modes in nonlinear fractional systems with deep lattices, Adv. Theory Simul., 5 (2022), 2100482. https://doi.org/10.48550/arXiv.2201.01038 doi: 10.48550/arXiv.2201.01038
    [11] G. Kopidakis, S. Aubry, G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), 165501. http://arXiv.org/10.1103/PhysRevLett.87.165501
    [12] A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259–287. http://arXiv.org/abs/math/0404450
    [13] S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Phys. D, 103 (1997), 201–250. http://dx.doi.org/10.1016/S0167-2789(96)00261-8 doi: 10.1016/S0167-2789(96)00261-8
    [14] D. Henning, G. P. Tsironis, Wave transmission in nonlinear lattices, Phys. Rep., 307 (1999), 333–432. http://dx.doi.org/10.1016/S0370-1573(98)00025-8 doi: 10.1016/S0370-1573(98)00025-8
    [15] G. H. Lin, J. S. Yu, Z. Zhou, Homoclinic solutions of discrete nonlinear Schrödinger equations with partially sublinear nonlinearities, Electron. J. Differ. Equ., 2019 (2019), 1–14. https://ejde.math.txstate.edu
    [16] G. H. Lin, Z. Zhou, J. S. Yu, Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials, J. Dynam. Differential Equations, 32 (2020), 527–555. http://dx.doi.org/10.1007/s10884-019-09743-4 doi: 10.1007/s10884-019-09743-4
    [17] F. C. Moreira, S. B. Cavalcanti, Gap solitons in one-dimensional (2) hetero-structures induced by the thermo-optic effect, Opt. Mater., 122 (2021), 111666. http://dx.doi.org/10.1016/j.optmat.2021.111666 doi: 10.1016/j.optmat.2021.111666
    [18] H. Meng, Y. Zhou, X. Li, Gap solitons in Bose CEinstein condensate loaded in a honeycomb optical lattice: Nonlinear dynamical stability, tunneling, and self-trapping, Phys. A, 577 (2021), 126087. http://dx.doi.org/10.1016/j.physa.2021.126087 doi: 10.1016/j.physa.2021.126087
    [19] G. H. Lin, J. S. Yu, Existence of a ground-state and infinitely many homoclinic solutions for a periodic discrete system with sign-changing mixed nonlinearities, J. Geom. Anal., 32 (2022), 127. http://dx.doi.org/10.1007/s12220-022-00866-7 doi: 10.1007/s12220-022-00866-7
    [20] G. H. Lin, J. S. Yu, Homoclinic solutions of periodic discrete Schrödinger equations with local superquadratic conditions, SIAM J. Math. Anal., 54 (2022), 1966–2005. http://dx.doi.org/10.1137/21M1413201 doi: 10.1137/21M1413201
    [21] S. Gatz, J. Herrmann, Soliton propagation in materials with saturable nonlinearity, J. Opt. Soc. Amer. B, 8 (1991), 2296–2302. http://dx.doi.org/10.1364/JOSAB.8.002296 doi: 10.1364/JOSAB.8.002296
    [22] S. Gatz, J. Herrmann, Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change, Opt. Lett., 17 (1992), 484–486. http://dx.doi.org/10.1364/OL.17.000484 doi: 10.1364/OL.17.000484
    [23] G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, No. 72. Providence, RI: American Mathematical Society, 2000. http://dx.doi.org/10.1090/surv/072
    [24] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity., 19 (2006), 27–40. http://dx.doi.org/10.1088/0951-7715/19/1/002 doi: 10.1088/0951-7715/19/1/002
    [25] A. Pankov, V. Rothos, Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity, Proc. R. Soc. A-Math. Phys. Eng. Sci., 464 (2008), 3219–3236. https:// doi.org/10.1098/rspa.2008.0255 doi: 10.1098/rspa.2008.0255
    [26] A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities. J. Math. Anal. Appl., 371 (2010), 254–265. http://dx.doi.org/10.1016/j.jmaa.2010.05.041
    [27] Z. Zhou, J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199–1212. http://dx.doi.org/10.1016/j.jde.2010.03.010 doi: 10.1016/j.jde.2010.03.010
    [28] Z. Zhou, J. S. Yu, Y. M. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., 54 (2011), 83–93. http://dx.doi.org/10.1007/s11425-010-4101-9 doi: 10.1007/s11425-010-4101-9
    [29] H. P. Shi, H. Zhang, Existence of gap solitons in periodic discrete nonlinear Schrödinger equations, J. Math. Anal. Appl., 361 (2010), 411–419. http://dx.doi.org/10.1016/j.jmaa.2009.07.026 doi: 10.1016/j.jmaa.2009.07.026
    [30] S. W. Ma, Z. Q. Wang, Multibump solutions for discrete periodic nonlinear Schrödinger equations, Z. Angew. Math. Phys., 64 (2013), 1413–1442. http://dx.doi.org/10.1007/s00033-012-0295-8 doi: 10.1007/s00033-012-0295-8
    [31] G. H. Lin, Z. Zhou, Homoclinic solutions in periodic difference equations with mixed nonlinearities, Math. Methods Appl. Sci., 39 (2016), 245–260. http://dx.doi.org/10.1002/mma.3474 doi: 10.1002/mma.3474
    [32] Z. Zhou, J. S. Yu, Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity, Acta. Math. Sin.-English Ser., 29 (2013), 1809–1822. http://dx.doi.org/ 10.1007/s10114-013-0736-0 doi: 10.1007/s10114-013-0736-0
    [33] J. Zhang, X. H. Tang, W. Zhang, Existence of multiple solutions of Kirchhoff type equation with sign-changing potential, Appl. Math. Comput., 242 (2014), 491–499. http://dx.doi.org/10.1016/j.amc.2014.05.070 doi: 10.1016/j.amc.2014.05.070
    [34] S. T. Chen, X. H. Tang, Infinitely many solutions for super-quadratic Kirchhoff-type equations with sign-changing potential, Appl. Math. Lett., 67 (2016), 40–45. http://dx.doi.org/ 10.1016/j.aml.2016.12.003 doi: 10.1016/j.aml.2016.12.003
    [35] W. R. Sun, L. Liu, L. Wang, Dynamics of fundamental solitons and rogue waves on the mixed backgrounds, Eur. Phys. J. Plus, 136 (2021), 1–9. http://dx.doi.org/10.1140/epjp/s13360-021-01379-y doi: 10.1140/epjp/s13360-021-01379-y
    [36] A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. http://dx.doi.org/10.1016/0022-1236(73)90051-7 doi: 10.1016/0022-1236(73)90051-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1244) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog