Research article Special Issues

The integer part of nonlinear forms with prime variables

  • Received: 17 August 2021 Accepted: 28 September 2021 Published: 20 October 2021
  • MSC : 11D75, 11P55

  • In this paper, we discuss problems that integer part of nonlinear forms with prime variables represent primes infinitely. We prove that under suitable conditions there exist infinitely many primes $ p_j, p $ such that $ [\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^k] = p $ and $ [\lambda_1p_1^3+\cdots+\lambda_4p_4^3+\lambda_5p_5^k] = p $ with $ k\geq 2 $ and $ k\geq 3 $ respectively, which improve the author's earlier results.

    Citation: Weiping Li, Guohua Chen. The integer part of nonlinear forms with prime variables[J]. AIMS Mathematics, 2022, 7(1): 1147-1154. doi: 10.3934/math.2022067

    Related Papers:

  • In this paper, we discuss problems that integer part of nonlinear forms with prime variables represent primes infinitely. We prove that under suitable conditions there exist infinitely many primes $ p_j, p $ such that $ [\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^k] = p $ and $ [\lambda_1p_1^3+\cdots+\lambda_4p_4^3+\lambda_5p_5^k] = p $ with $ k\geq 2 $ and $ k\geq 3 $ respectively, which improve the author's earlier results.



    加载中


    [1] I. Danicic, On the integral part of a linear form with prime variables, Canadian J. Math., 18 (1966), 621–628. doi: 10.4153/CJM-1966-061-3. doi: 10.4153/CJM-1966-061-3
    [2] W. Li, T. Wang, Integral part of a nonlinear form with three squares of primes, Chinese Ann. Math., 32 (2011), 753–762. doi: 10.1007/s11464-011-0100-6. doi: 10.1007/s11464-011-0100-6
    [3] W. Li, B. Su, The integral part of a nonlinear form with five cubes of primes, Lith. Math. J., 53 (2013), 63–71. doi: 10.1007/s10986-013-9193-9. doi: 10.1007/s10986-013-9193-9
    [4] S. Srinivasan, A Diophantine inequality with prime variables, B. Aust. Math. Soc., 38 (1988), 57–66. doi: 10.1017/S0004972700027234. doi: 10.1017/S0004972700027234
    [5] R. C. Vaughan, Diophantine approximation by prime numbers, I, P. Lond. Math. Soc., 28 (1974), 373–384. doi: 10.1112/plms/s3-28.2.373 doi: 10.1112/plms/s3-28.2.373
    [6] R. C. Vaughan, Diophantine approximation by prime numbers, II, P. Lond. Math. Soc., 28 (1974), 385–401. doi: 10.1112/plms/s3-28.3.385. doi: 10.1112/plms/s3-28.3.385
    [7] G. Harman, Trigonometric sums over primes I, Mathematika, 28 (1981), 249–254. doi: 10.1112/S0025579300010305. doi: 10.1112/S0025579300010305
    [8] H. Davenport, K. F. Roth, The solubility of certain diophantine inequalities, Mathematika, 2 (1955), 81–96. doi: 10.1112/S0025579300000723. doi: 10.1112/S0025579300000723
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2019) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog