Research article

A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation

  • Received: 16 April 2021 Accepted: 19 August 2021 Published: 31 August 2021
  • MSC : 41A05, 42A82, 65F50, 65L10, 65N12, 65N15, 65N38

  • One of the attractive and practical techniques to transform the domain integrals to equivalent boundary integrals is the dual reciprocity method (DRM). The success of DRM relies on the proper treatment of the non-homogeneous term in the governing differential equation. For this purpose, radial basis functions (RBFs) interpolations are performed to approximate the non-homogeneous term accurately. Moreover, when the interpolation points are large, the global RBFs produced dense and ill-conditioned interpolation matrix, which poses severe stability and computational issues. Fortunately, there exist interpolation functions with local support known as compactly supported radial basis functions (CSRBFs). These functions produce a sparse and well-conditioned interpolation matrix, especially for large-scale problems. Therefore, this paper aims to apply DRM based on multiquadrics (MQ) RBFs and CSRBFs for evaluation of the Poisson equation, especially for large-scale problems. Furthermore, the convergence analysis of DRM with MQ and CSRBFs is performed, along with error estimate and stability analysis. Several experiments are performed to ensure the well-conditioned, efficient, and accurate behavior of the CSRBFs compared to the MQ-RBFs, especially for large-scale interpolation points.

    Citation: Suliman Khan, M. Riaz Khan, Aisha M. Alqahtani, Hasrat Hussain Shah, Alibek Issakhov, Qayyum Shah, M. A. EI-Shorbagy. A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation[J]. AIMS Mathematics, 2021, 6(11): 12560-12582. doi: 10.3934/math.2021724

    Related Papers:

  • One of the attractive and practical techniques to transform the domain integrals to equivalent boundary integrals is the dual reciprocity method (DRM). The success of DRM relies on the proper treatment of the non-homogeneous term in the governing differential equation. For this purpose, radial basis functions (RBFs) interpolations are performed to approximate the non-homogeneous term accurately. Moreover, when the interpolation points are large, the global RBFs produced dense and ill-conditioned interpolation matrix, which poses severe stability and computational issues. Fortunately, there exist interpolation functions with local support known as compactly supported radial basis functions (CSRBFs). These functions produce a sparse and well-conditioned interpolation matrix, especially for large-scale problems. Therefore, this paper aims to apply DRM based on multiquadrics (MQ) RBFs and CSRBFs for evaluation of the Poisson equation, especially for large-scale problems. Furthermore, the convergence analysis of DRM with MQ and CSRBFs is performed, along with error estimate and stability analysis. Several experiments are performed to ensure the well-conditioned, efficient, and accurate behavior of the CSRBFs compared to the MQ-RBFs, especially for large-scale interpolation points.



    加载中


    [1] J. P. Agnantiaris, D. Polyzos, D. E. Beskos, Some studies on dual reciprocity BEM for elastodynamic analysis, Comput. Mech., 17 (1996), 270–277. doi: 10.1007/BF00364830
    [2] C. A. Brebbia, J. Dominguez, Boundary elements: An introductory course, WIT press, 1994.
    [3] G. Chen, J. Zhou, Boundary element methods. Vol. 92. London: Academic press, 1992.
    [4] C. S. Chen, C. A. Brebbia, H. Power, Dual reciprocity method using compactly supported radial basis functions, Commu. Numeric. Method. Eng., 15 (1999), 137–150. doi: 10.1002/(SICI)1099-0887(199902)15:2<137::AID-CNM233>3.0.CO;2-9
    [5] C. S. Chen, M. A. Golberg, R. Schaback, Recent developments in the dual reciprocity method using compactly supported radial basis functions, Transform. Dom. Effc. Bound., 1 (2003), 1–41.
    [6] C. S. Chen, M. D. Marcozzi, S. Chof, The method of fundamental solutions and compactly supported radial basis functions: A meshless approach to 3D problems, WIT Transa. Model. Simul., 25 (1999).
    [7] A. H. D. Cheng, D. L. Young, C. C. Tsai, Solution of Poisson's equation by iterative DRBEM using compactly supported, positive definite radial basis function, Eng. Anal. Bound. Elem., 24 (2000), 549–557. doi: 10.1016/S0955-7997(00)00035-7
    [8] M. S. Floater, A. Iske, Multistep scattered data interpolation using compactly supported radial basis functions, J. Comput. Appl. Math., 73 (1996), 65–78. doi: 10.1016/0377-0427(96)00035-0
    [9] G. E. Fasshauer, Solving differential equations with radial basis functions: Multilevel methods and smoothing, Adv. Comput. Math., 11 (1999), 139–159. doi: 10.1023/A:1018919824891
    [10] M. A. Golberg, C. S. Chen, S. R. Karur, Improved multiquadric approximation for partial differential equations, Eng. Anal. Bound. Elem., 18 (1996), 9–17. doi: 10.1016/S0955-7997(96)00033-1
    [11] M. A. Golberg, C. S. Chen, H. Bowman, H. Power, Some comments on the use of radial basis functions in the dual reciprocity method, Comput. Mech., 21 (1998), 141–148. doi: 10.1007/s004660050290
    [12] M. A. Golberg, C. S. Chen, H. Bowman, Some recent results and proposals for the use of radial basis functions in the BEM, Eng. Anal. Bound. Elem., 23 (1999), 285–296. doi: 10.1016/S0955-7997(98)00087-3
    [13] R. He, J. Zhang, S. Khan, L. Yang, W. Lin, A new implementation of DRM with dual interpolation boundary face method for Poisson equation, Eng. Anal. Bound. Elem., 121 (2020), 21–30. doi: 10.1016/j.enganabound.2020.09.004
    [14] B. Jumarhon, S. Amini, K. Chen, On the boundary element dual reciprocity method, Eng. Anal. Bound. Elem., 20 (1997), 205–211. doi: 10.1016/S0955-7997(97)00084-2
    [15] W. J. Feng, S. F. Xin, C. Y. Min, An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems, Chin. Phys. B, 21 (2012), 090204. doi: 10.1088/1674-1056/21/9/090204
    [16] S. R. Karur, P. A. Ramachandran, Augmented thin plate spline approximation in DRM, Bound. Elem. Commu., 6 (1995), 55–58.
    [17] S. Khan, R. He, F. Khan, M. R. Khan, M. Arshad, H. H. Shah, On the evaluation of Poisson equation with dual interpolation boundary face method, Europ. J. Mech.-A/S., 88 (2021), 104248. doi: 10.1016/j.euromechsol.2021.104248
    [18] C. F. Loeffle, Á. L. Cruz, A. Bulcão, Direct use of radial basis interpolation functions for modelling source terms with the boundary element method, Eng. Anal. Bound. Elem., 50 (2015), 97–108. doi: 10.1016/j.enganabound.2014.07.007
    [19] C. F. Loeffle, L. Zamprogno, W. J. Mansur, A. Bulcão, Performance of compact radial basis functions in the direct interpolation boundary element method for solving potential problems, Comp. Model. Eng. Sci., 113 (2017), 367–387.
    [20] C. Miranda, Partial differential equations of elliptic type, Springer-Verlag, 1970.
    [21] W. R. Madych, Miscellaneous error bounds for multiquadric and related interpolators, Comp. Math. Appl., 24 (1992), 121–138. doi: 10.1016/0898-1221(92)90175-H
    [22] P. W. Partridge, C. A. Brebbia, L. C. Wrobel, The dual reciprocity boundary element method Southampton, International Series on Computational Engineering, 1992.
    [23] P. A. Ramachandran, K. Balakrishnan, Radial basis functions as approximate particular solutions: Review of recent progress, Eng. Anal. Bound. Elem., 24 (2000), 575–582. doi: 10.1016/S0955-7997(00)00037-0
    [24] R. Schaback, Creating surfaces from scattered data using radial basis functions, Math. Meth. Curv. Surf., 477 (1995).
    [25] R. Schaback, Error estimates and condition numbers for radial basis function interpolation, Adva. Comput. Math., 3 (1995), 251–264. doi: 10.1007/BF02432002
    [26] R. Schaback, On the efficiency of interpolation by radial basis functions, 1997.
    [27] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adva. Compu. Math., 4 (1995), 389–396. doi: 10.1007/BF02123482
    [28] H. Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory, 93 (1998), 258–272. doi: 10.1006/jath.1997.3137
    [29] H. Wendland, Scattered data approximation. Vol. 17, Cambridge university press, 2004.
    [30] T. Yamada, L. C. Wrobel, H. Power, On the convergence of the dual reciprocity boundary element method, Eng. Anal. Bound. Elem., 13 (1994), 291–298. doi: 10.1016/0955-7997(94)90055-8
    [31] J. Zhang, L. Han, W. Lin, Y. Dong, C. Ju, A new implementation of BEM by an expanding element interpolation method, Eng. Anal. Bound. Elem., 78 (2017), 1–7. doi: 10.1016/j.enganabound.2017.01.008
    [32] J. Zhang, W. Lin, Y. Dong, C. Ju, A double-layer interpolation method for implementation of BEM analysis of problems in potential theory, Appl. Math. Model., 51 (2017), 250–269. doi: 10.1016/j.apm.2017.06.044
    [33] J. Zhang, W. Lin, Y. Dong, A dual interpolation boundary face method for elasticity problems, Europ. J. Mech.-A/S., 73 (2019), 500–511. doi: 10.1016/j.euromechsol.2018.10.011
    [34] J. Zhang, Y. Dong, W. Lin, C. Ju, A singular element based on dual interpolation BFM for V-shaped notches, Appl. Math. Model., 71 (2019), 208–222. doi: 10.1016/j.apm.2019.02.020
    [35] J. Zhang, R. He, B. Chi, W. Lin, A dual interpolation boundary face method with Hermite-type approximation for potential problems, Appl. Math. Model., 81 (2020), 457–472. doi: 10.1016/j.apm.2020.01.010
    [36] J. Zhang, R. He, W. Lin, L. Yang, B. Chi, C. Ju, et al. A dual interpolation boundary face method with Hermite-type approximation for elasticity problems, Europ. J. Mech. -A/S., 82 (2020), 104005. doi: 10.1016/j.euromechsol.2020.104005
    [37] F. Zhou, J. Zhang, X. Sheng, G. Li, Shape variable radial basis function and its application in dual reciprocity boundary face method, Eng. Anal. Bound. Elem., 35 (2011), 244–252. doi: 10.1016/j.enganabound.2010.08.009
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2349) PDF downloads(97) Cited by(5)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog