Research article

Refined estimates and generalization of some recent results with applications

  • Received: 31 May 2021 Accepted: 06 July 2021 Published: 23 July 2021
  • MSC : 26A15, 26A51, 26D10, 26D15

  • In this paper, we firstly give improvement of Hermite-Hadamard type and Fej$ \acute{e} $r type inequalities. Next, we extend Hermite-Hadamard type and Fej$ \acute{e} $r types inequalities to a new class of functions. Further, we give bounds for newly defined class of functions and finally presents refined estimates of some already proved results. Furthermore, we obtain some new discrete inequalities for univariate harmonic convex functions on linear spaces related to a variant most recently presented by Baloch et al. of Jensen-type result that was established by S. S. Dragomir.

    Citation: Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch. Refined estimates and generalization of some recent results with applications[J]. AIMS Mathematics, 2021, 6(10): 10728-10741. doi: 10.3934/math.2021623

    Related Papers:

  • In this paper, we firstly give improvement of Hermite-Hadamard type and Fej$ \acute{e} $r type inequalities. Next, we extend Hermite-Hadamard type and Fej$ \acute{e} $r types inequalities to a new class of functions. Further, we give bounds for newly defined class of functions and finally presents refined estimates of some already proved results. Furthermore, we obtain some new discrete inequalities for univariate harmonic convex functions on linear spaces related to a variant most recently presented by Baloch et al. of Jensen-type result that was established by S. S. Dragomir.



    加载中


    [1] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalits entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. doi: 10.1007/BF02418571
    [2] S. S. Dragomir, Bounds for the normalized Jensen functional, Bull. Aust. Math. Soc., 74 (2006), 471–478. doi: 10.1017/S000497270004051X
    [3] L. Horvath, K. A. Khan, J. Pecaric, Cyclic refinements of the discrete and integral form of Jensen's inequality with applications, Analysis, 36 (2016), 253–262.
    [4] L. Horvath, D. Pecaric, J. Pecaric, Estimations of f-and Renyi divergences by using a cyclic refinement of the Jensen's inequality, Bull. Malays. Math. Sci. Soc., 42 (2019), 933–946. doi: 10.1007/s40840-017-0526-4
    [5] J. Jaksetic, D. Pecaric, J. Pecaric, Some properties of Zipf-Mandelbrot law and Hurwitz-function, Math. Inequal. Appl., 21 (2018), 575–584.
    [6] J. Jaksetic, J. Pecaric, Exponential convexity method, J. Convex Anal., 20 (2013), 181–197.
    [7] C. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer-Verlag, 2006.
    [8] J. E. Pecaric, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, New York: Academic Press, 1992.
    [9] S. Varošanec, On $h$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311.
    [10] İ. İşcan, Hermite-Hadamard type inequaities for harmonically functions, Hacet. J. Math. Stat., 43 (2014), 935–942.
    [11] İ. İşcan, Hermite-Hamard type inequalities for harmonically $(\alpha, m)$-convex functions, 2015. Avaliable from: https://arXiv.org/pdf/1307.5402v3.
    [12] I. A. Baloch, I. Işcan, S. S. Dragomir, Fej$\acute{e}$r's type inequalities for harmonically $(s, m)$-convex functions, Int. J. Anal. Appl., 12 (2016), 188–197.
    [13] I. A. Baloch, I. Işcan, Some Ostrowski type inequalities for harmonically $(s, m)$-convex functions in Second Sense, Int. J. Anal., 2015 (2015), 672675.
    [14] I. A. Baloch, I. Işcan, Some Hermite-Hadamard type integral inequalities for Harmonically $(p, (s, m))$-convex functions, J. Inequal. Spec. Funct., 8 (2017), 65–84.
    [15] M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for $n$-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. doi: 10.1186/s13660-020-02393-x
    [16] I. A. Baloch, Y. M. Chu, Petrović-type inequalities for harmonic $h$-convex functions, J. Funct. Space., 2020 (2020), 3075390.
    [17] T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized $(s, m)$-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 406. doi: 10.1186/s13662-020-02865-w
    [18] I. A. Baloch, I. Işcan, Integral inequalities for differentiable harmonically $(s, m)$-preinvex functions, Open J. Math. Anal., 1 (2017), 25–33.
    [19] I. A. Baloch, S. S. Dragomir, New inequalities based on harmonic log-convex functions, Open J. Math. Anal., 3 (2019), 103–105. doi: 10.30538/psrp-oma2019.0043
    [20] X. Z. Yang, G. Farid, W. Nazeer, M. Yussouf, Y. M. Chu, C. F. Dong, Fractional generalized Hadamard and Fejér-Hadamard inequalities for $m$-convex function, AIMS Mathematics., 5 (2020), 6325–6340. doi: 10.3934/math.2020407
    [21] S. H. Wu, I. A. Baloch, I. Iscan, On Harmonically $(p, h, m)$-preinvex functions, J. Funct. Space., 2017 (2017), 2148529.
    [22] I. A. Baloch, New ostrowski type inequalities for functions whose derivatives are $p$-preinvex, J. New Theory, 16 (2017), 68–79.
    [23] I. A. Baloch, M. Bohner, M. D. L. Sen, Petrovic-type inequalities for harmonic convex functions on coordinates, J. Inequal. Spec. Funct., 11 (2020), 16–23.
    [24] S. Y. Guo, Y. M. Chu, G. Farid, S. Mehmood, W. Nazeer, Fractional Hadamard and Fejér-Hadamard inequaities associated with exponentially $(s, m)$-convex functions, J. Funct. Space., 2020 (2020), 2410385.
    [25] M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, A. G. Khan, Some new bounds for Simpson's rule involving special functions via harmonic $h$-convexity, J. Nonlinear Sci. Appl., 10 (2017), 1755–1766. doi: 10.22436/jnsa.010.04.37
    [26] M. R. Delavar, S. S. Dragomir, M. De La Sen, A note on characterization of $h$-convex functions via Hermite-Hadamard type inequality, Probl. Anal. Issues Anal., 8 (2019), 28–36.
    [27] I. A. Baloch, B. R. Ali, On new inequalities of Hermite-Hadamard type for functions whose fourth derivative absolute values are quasi-convex with applications, J. New Theory, 10 (2016), 76–85.
    [28] M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermit Hadamard inequalities in fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. doi: 10.3390/sym13040673
    [29] M. A. Alqudah, A. Kashuri, P. O. Mohammed, T. Abdeljawad, M. Raees, M. Anwar, et al., Hermite Hadamard integral inequalities on coordinated convex functions in quantum calculus, Adv. Differ. Equ., 2021 (2021), 264. doi: 10.1186/s13662-021-03420-x
    [30] F. Al-Azemi, O. Calin, Asian options with harmonic average, Appl. Math. Inf. Sci., 9 (2015), 1–9.
    [31] I. A. Baloch, M. De La Sen, İ. İşcan, Characterizations of classes of harmonic convex functions and applications, Int. J. Anal. Appl., 17 (2019), 722–733.
    [32] F. X. Chen, S. H. Wu, Fej$\acute{e}$r and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014), 386806.
    [33] I. A. Baloch, A. H. Mughal, Y. M. Chu, A. U. Haq, M. De la Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, AIMS Mathematics, 5 (2020), 6404–6418. doi: 10.3934/math.2020412
    [34] I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. D. L. Sen, Improvement and generalization of some results related to the class of harmonically convex functions and applications, J. Math. Comput. Sci., 22 (2021), 282–294.
    [35] S. S. Dragomir, Inequalities of Jensen type for $HA$-convex functions, Analele Universitatii Oradea Fasc. Matematica, 27 (2020), 103–124.
    [36] A. A. Mughal, H. Almusawa, A. U. Haq, I. A. Baloch, Properties and bound of functionals related to Jensen-type inequalities via harmonic convex functions, In press.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2168) PDF downloads(118) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog